
Application Programming Interface
This documentation covers the functionality of the ExtraView Programming Interface (API). This is a
REpresentational State Transfer (RESTful) API This document is intended for the experienced computer
user who has a good understanding of either the UNIX, Linux, or Microsoft Windows environments
from which they will use the Application Programming Interface (API). To take maximum advantage of
the features offered by the API, knowledge of web-based technologies are helpful. If you intend to
modify the behavior of ExtraView with user custom programming, you will need to be skilled in coding
with the Java language. In addition, ExtraView administration skills are required to configure many of
the functions offered.

Downloadable PDF

The Application Programming Interface Guide is downloadable as a single PDF by clicking here. You
will need the Adobe Acrobat Reader to view this.

Related API Guides

• CLI - Command Line Interface
• Web Services Interface

The key features of the RESTful API are:

• Insert, update and delete records in the ExtraView database from remote applications
• Search the ExtraView database and return a set of records defined in a query
• Export information from the ExtraView database for input to a data warehouse
• Upload and download file attachments to and from the ExtraView database
• Provide limited administration access to create metadata and to manage user accounts
• Show the names of fields within the ExtraView database to which the user has access

Concepts
The REstful API is a set of programmable HTTP calls. These calls operate on the ExtraView application
to return data and metadata to the calling program or to update items within the ExtraView database.

API command summary

ADD_ATTACHMENT uploads a file attachment to the ExtraView database
ADD_FIELD_LIST provides an ordered list of fields that are used to insert records
ADD_USER_TO_GROUP adds an existing user to a user group
ALLOWED_LIST gives the list of allowed values for a key
CUSTOM invokes a call within the CLI user exit in the UserCustom java class
DEBUG alters the debug level of messages sent to the application server log

https://docs-stg.extraview.com/site/sites/all/themes/extraview_theme/files/ExtraView-application-programming-interface-guide-22.1.pdf
http://www.adobe.com/

DELETE deletes existing issue(s) from the database
DELETE_USER deletes an existing user
EDIT_FIELD_LIST provides an ordered list of fields that are used for update
FIELDS displays a list of available fields and their screen names
FILL_IN uses a template and fills in the values with the parameters provided
GET retrieves a single record from the database
GET_APP_DEFAULT retrieve an ExtraView behavior setting (deprecated)
GET_AREAS retrieves a list of the areas in use from the database
GET_ATTACHMENT downloads a copy of a file from an issue attachment

GET_BEHAVIOR_SETTING retrieve an ExtraView behavior setting (supercedes
GET_APP_DEFAULT)

GET_FIELDS download a specific field or fields from an existing issue
GET_HEARTBEAT return a status indicator to show that ExtraView is alive
GET_LOG returns the contents of the application server log
GET_PROJECTS retrieves a list of projects for a given area from the database
GET_REPORTS retrieves a list of the reports currently available to the user
GET_ROLES retrieves the available roles for a specified user from the database
GET_TITLE retrieve data dictionary information on a field
GET_TOKEN retrieves an authentication token
GET_USERS retrieve a list of user names from the database
GET_VALID_META_DATA retrieve the metadata for an issue
HISTORY retrieve all records from a specified point in time
IMPORT_ALLOWED_VALUES import allowed values from a file into ExtraView
INSERT inserts new records into the ExtraView database
INSERT_USER create a new user account
INSERT_XML inserts a new record into ExtraView from XML formatted input data
ITEM_EXISTS checks whether an issue exists in the database
LIST_ATTACHMENT retrieves a list of file attachments against a single issue
RUN_REPORT runs a report that has been defined within ExtraView
SEARCH provides a general search and retrieval mechanism
SEARCH_FIELD_LIST provides a list of fields that can be searched for
SET_AREA_PROJ sets the working area and project
SET_ROLE sets the working role of the user
UPDATE updates existing records in the ExtraView database
UPDATE_USER_PASSWORD updates a user’s password
USER_FIELD_LIST displays an ordered list of fields for the user record
USER_GROUP_LIST displays a list of user roles ordered by the user role title
VERSION returns the version number and build number of ExtraView

Authentication

All API commands require authentication. This can take one of three forms:

1. Each call may embed parameters for a valid User ID and a valid password
2. An API call may request a token for subsequent calls using the get_token command. This call

must include a valid User ID and password, but subsequent calls may use the token. This is
more secure than the first form, as the password is only passed on the first access, until the token
used in the subsequent calls expires. This is the most secure form of access

3. A behavior setting named ALLOW_ANONYMOUS_API_ACCESS may turn off authentication
via the API. This is the least secure method of access.

The setting ALLOW_ANONYMOUS_API_ACCESS. allows anonymous access to ExtraView. Most
commonly, this is used to provide a web page that you have designed to perform transactions, or to
query the ExtraView database, not to need a hard-coded username and password. To preserve a secure
environment, it is necessary to perform the following steps to set up anonymous access:

1. Within the ExtraView administration section, under the Systems Control tab and within the API
Settings section, set the behavior setting named ALLOW_ANONYMOUS_API_ACCESS to
have a value of YES

2. In the same section, set the application default named ANONYMOUS_API_USER_ID to the
user ID that you will use for the anonymous access

3. All entries made in an anonymous fashion will use this user ID to log their activities
4. Ensure that you only give security privileges to the user group to which this user ID belongs that

is in keeping with the fact that this user is used to log all activities. Normally this means that this
user group will have limited access to fields, especially in write and query modes

5. It is recommended that when you allow users to enter issues in an anonymous fashion, that you
have ExtraView fields that capture their names and other contact details

Once you have set up anonymous access, the parameters named user_id and password in all API
commands become optional. If they are provided, they must be valid combinations of user names and
passwords.

Requests Passed to the API

To create an API call, the user creates an HTTP request (HTTPRequest object) and submits this to the
server. This request can be composed within virtually any computer language. Each HTTP request is
composed of the following parts:

• The server domain name, including the path to the servlet where ExtraView is running. For
example, http://www.myserver.com/evj/ExtraView

• The class and method which accesses the API. Usually this is ev_api.action
• The user_id and password for the user, passed as name / value pairs or an unexpired token
• The statevar, passed as a name / value pair. This parameter defines the specific API call being

made

• A list of name / value pairs providing the parameters and their values for the API call, and which
are necessary or optional to execute the API call. Note that the user is responsible to provide a
correct list of parameters for each call. If the API does not recognize a parameter, then it is
ignored and no warning is given to the user.

If you are creating your own HTTPRequest object from a programming environment to call the
ExtraView API, then you must also set the standard parts of the HTTPRequest object, such as the
USER_AGENT. There will most probably be standard libraries for your environment to assist in doing
this.

XML Data Returned From API Calls

Much of the data returned by an API call is in XML format. This has some significance to the user of the
API, in that Extraview's XML data may embed your own XML within its results. To accommodate this,
ExtraView uses Base64 encoding whenever it sees XML data returned from the application to ensure
that the XML returned by API commands through the API must be well-formed. This means that the
contents of a CDATA string must not contain the character string "]]>", because that is the end sentinel
for a CDATA section. So, if the original data contains this string, there must be some way to escape the
data. For easy recognition of an escaped CDATA string, ExtraView prepend the characters %25S to the
front of the string. These characters are merely a sentinel and are not part of the output string. The
encoding used for the rest of the CDATA string is called Base64, and algorithms for encoding/decoding
are widely available. Furthermore, ExtraView ensures that the %25S sentinel string does not appear in
the CDATA raw character string by encoding any CDATA raw character string to Base64 as well. It is
the responsibility of the receiver, therefore, to test each CDATA section for the sentinel characters
%25S at the beginning of the CDATA, and, if present, perform the Base64 decode function on the
remainder of the character data to get the raw character values in the field.

Server-side Templates

Server-side templates can be defined for many API commands. These templates allow you to control the
presentation of the output from the API command. Most commonly this is used to allow the
administrator to integrate ExtraView with their company’s own web site. For example, a page within
your company’s web site can perform a search of the ExtraView database and return the results
formatted with the same look and feel as the web site.

Templates allow you to use “tags” that are substituted at runtime, with the actual value in a record. For
example, the tag __STATUS__ refers to the value of the STATUS field of the current record. Tags are
available for most fields in the data dictionary. In addition, if you place a data dictionary field on a
template, it must exist on the Detailed Report layout inherited by the specific Business Area and Project.
The user must also have read permission to the field.

See this page for full details of server-side templates.

Repeating Row Records and the API

https://docs-stg.extraview.com/server-side-templates

Output from ExtraView using repeating rows can be turned off, to simplify the XML returned from a
command. To use repeating rows within the API, you must set the behavior setting named
MULTI_RELEASE_XML to a value of YES within the administration section.

The following API commands support repeating rows:

• GET
• GET_FIELDS
• HISTORY
• INSERT – note that you can only insert a single repeating row when inserting an issue, but you

can then update that issue with additional repeating rows
• RUN_REPORT
• UPDATE – note that you can only update a single repeating row with a single update command.

The commands that return XML will do so as shown in the following example:

<REPEATING_ROWS TITLE='Repeating Rows' REPEATING_ROWS='1'>
 <REPEATING_ROW REPEATING_ROW_ID='1073779532'>
 <FRED_RR TITLE='Repeating row fred'>
 <![CDATA[a new fredrr]]>
 </FRED_RR>
 <RELEASE_CHILD_STATUS TITLE='Branch Status'>
 <![CDATA[Assigned]]>
 </RELEASE_CHILD_STATUS>
 <RELEASE_REQUESTED_RELEASE TITLE='Requested Release'>
 <![CDATA[4.0.3.14]]>
 </RELEASE_REQUESTED_RELEASE>
 <RELEASE_COMMITTED_RELEASE TITLE='Committed Release'>
 <![CDATA[4.0.3.14]]>
 </RELEASE_COMMITTED_RELEASE>
</REPEATING_ROW>
<REPEATING_ROW REPEATING_ROW_ID='1073779542'>
 <FRED_RR TITLE='Repeating row fred'>
 <![CDATA[a new fredrr2]]>
 </FRED_RR>
 <RELEASE_CHILD_STATUS TITLE='Branch Status'>
 <![CDATA[Assigned]]>
 </RELEASE_CHILD_STATUS>
 <RELEASE_REQUESTED_RELEASE TITLE='Requested Release'>
 <![CDATA[4.0.3.13]]>
 </RELEASE_REQUESTED_RELEASE>
 <RELEASE_COMMITTED_RELEASE TITLE='Committed Release'>
 <![CDATA[4.0.3.13]]>
 </RELEASE_COMMITTED_RELEASE>
</REPEATING_ROW>
<REPEATING_ROW REPEATING_ROW_ID='1073779552'>
 <FRED_RR TITLE='Repeating row fred'>
 <![CDATA[a new fredrr3]]>
 </FRED_RR>
 <RELEASE_CHILD_STATUS TITLE='Branch Status'>
 <![CDATA[Assigned]]>
 </RELEASE_CHILD_STATUS>
 <RELEASE_REQUESTED_RELEASE TITLE='Requested Release'>

 <![CDATA[4.2.2.7]]>
 </RELEASE_REQUESTED_RELEASE>
 <RELEASE_COMMITTED_RELEASE TITLE='Committed Release'>
 <![CDATA[4.2.2.8]]>
 </RELEASE_COMMITTED_RELEASE>
</REPEATING_ROW>
</REPEATING_ROWS>

The data structures here are:

1. Repeating Rows Element -- at most one per issue extracted:

<REPEATING_ROWS TITLE=’Repeating Rows’ REPEATING_ROWS='1'> ... (repeating row
elements) </REPEATING_ROWS>

2. Repeating Row Elements – as many as there are repeating rows in the issue extracted:

<REPEATING_ROW REPEATING_ROW_ID='nnnnnnn'> ... (repeating row field elements)
</REPEATING_ROW>

3. Repeating Row Field Elements – one for each field inside the repeating row:

<fieldTag TITLE='fieldTitle'> <![CDATA[fieldData]]> </fieldTag>

where – fieldTag = data dictionary field name fieldTitle = title of the field fieldData = data
contained in the field (in CDATA-encoded format)

Updating and Inserting Fields in Repeating Row Data

Previous to release 4.2.2.8, the API did not handle repeating row records, therefore the previous format
for for update of fields within an issue is maintained for backward compatibility. An extension is made
to allow for the insertion or the update of one or more specific repeating row fields as follows.

Updating Repeating Rows

To update an existing repeating row field, there must be a parameter named PROBLEM_RELEASE_ID
in the update parameter set. This parameter may have multiple values, each one specifying a specific
repeating row ID (i.e. the ITEM_ID of the repeating row within the issue). The field values associated
with these repeating rows are specified in a parallel set of parameters, named for the field name within
the repeating row. Each such parameter may be given mutiple values, each of which maps to a repeating
row as specified by the multiple values of PROBLEM_RELEASE_ID.

As an example, assume that there are 5 repeating rows in issue #100, numbered 201, 202, 203, 204, and
205.

Then with PROBLEM_RELEASE_ID set to the values (202, 204), the value of FRED_RR, a repeating
row-resident field, might take on the values ("fred202", "fred204") in the input parameters.

Then, the repeating rows with the ID’s of 202 and 204 are updated with the value of FRED_RR being
set to "fred202" and "fred204" respectively. No other repeating rows would be affected by the update.

Inserting Repeating Rows

Inserting repeating rows is similar to updating repeating rows, except no PROBLEM_RELEASE_ID is
given as a parameter. When no PROBLEM_RELEASE_ID is present, ExtraView will insert the
remaining fields as a new repeating ROW.

You can insert multiple repeating rows with a single API call. For example, the following parameter
string will insert three repeating row records, each within a single field named FRED_RR:

&FRED_RR=val1&FRED_RR=val2&FRED_RR=val3

Repeating Row Example

First, make sure you have set the behavior setting named MULTI_RELEASE_XML to YES. The
following examples assume you have an ExtraView server located at
http@//extraview.myserver.com/evj/ExtraView.

Retrieving an Issue

We will first retrieve issue number 26788 from ExtraView. This issue has existing repeating rows.

http@//extraview.myserver.com/evj/ExtraView/ev_api.action?user_id=myname&password=mypass&st
atevar=get&id=26788

ExtraView returns XML data that includes a section about Repeating Rows. The XML is shown
indented here for clarity.

...
<REPEATING_ROWS TITLE="Repeating Rows" REPEATING_ROWS="1">
 <REPEATING_ROW REPEATING_ROW_ID="1073788412">
 <RELEASE_SOURCE_CODE_BRANCH TITLE="Code Branch">
 <![CDATA[4.3]]>
 </RELEASE_SOURCE_CODE_BRANCH>
 <RELEASE_CHILD_STATUS TITLE="Branch Status">
 <![CDATA[Assigned]]>
 </RELEASE_CHILD_STATUS>
 <RELEASE_REQUESTED_RELEASE TITLE="Requested Release">
 <![CDATA[4.3.1]]>
 </RELEASE_REQUESTED_RELEASE>
 <RELEASE_COMMITTED_RELEASE TITLE="Committed Release">
 <![CDATA[4.3.1]]>
 </RELEASE_COMMITTED_RELEASE>
 </REPEATING_ROW>

 <REPEATING_ROW REPEATING_ROW_ID="1073791532">
 <RELEASE_SOURCE_CODE_BRANCH TITLE="Code Branch">
 <![CDATA[4.4]]>
 </RELEASE_SOURCE_CODE_BRANCH>
 <RELEASE_CHILD_STATUS TITLE="Branch Status">
 <![CDATA[Open]]>
 </RELEASE_CHILD_STATUS>
 <RELEASE_REQUESTED_RELEASE TITLE="Requested Release">
 <![CDATA[4.4]]>
 </RELEASE_REQUESTED_RELEASE>
 <RELEASE_COMMITTED_RELEASE TITLE="Committed Release">
 <![CDATA[4.4]]>
 </RELEASE_COMMITTED_RELEASE>
 </REPEATING_ROW>
 </REPEATING_ROWS>
...

The important data you need is located at . This provides the unique identifier for the particular
repeating row of the issue.

Updating an Issue

To update the field named RELEASE_CHILD_STATUS field within the repeating record field just
retrieved from the example above:

http://extraview.myserver.com/evj/ExtraView/ev_api.action?user_id=myname&password=mypass&stat
evar=update&id=26788&problem_release_id=1073788412&RELEASE_CHILD_STATUS=6936

Inserting an Issue

To insert a new issue, including one repeating row:

http://extraview.myserver.com/evj/ExtraView/ev_api.action?user_id=myname&password=mypass&stat
evar=insert&area_id=4&project_id=8&category=SOFTWARE
&short_descr=Testing&product_name=EVJAVA&module_name=DATABASE&RELEASE_CHILD_
STATUS=6936&description=blah

The presence of the field named RELEASE_CHILD_STATUS, as the only field in the example that has
exists within a repeating row record, causes a new repeating row record to be created.

Server-Side Templates
Server-side templates can be defined for many API and CLI commands. These templates allow you to
control the presentation of the output from the API command. Most commonly this is used to allow the
administrator to integrate ExtraView with their company’s own web site.

For example, a page within your company’s web site can perform a search of the ExtraView database
and return the results formatted with the same look and feel as the web site.

Templates allow you to use "tags" that are substituted at runtime, with the actual value in a record. For
example, the tag __STATUS__ refers to the value of the STATUS field of the current issue. Tags are
available for most fields in the data dictionary. In addition, if you place a data dictionary field on a
template, it must exist on the Detailed Report layout inherited by the specific Business Area and
Project. The user must also have read permission to the field.

TEXTAREA, LOGAREA and PRINTTEXT fields have special handling within ExtraView. This is
because they can be broken down into three components, the text itself, the user’s name who entered the
text, and a timestamp. Each of these components can be accessed individually, as shown in the
following example. Note that the field name itself must be included as a tag, although it does not display
anything in the output. Therefore, an HTML fragment that might display the DESCRIPTION field may
look like:

<TD>
__DESCRIPTION__
__DESCRIPTION.USER__ : __DESCRIPTION.TIMESTAMP__

__DESCRIPTION.TEXT__

</TD>

The full explanation for each part of the field is as follows, where DDNAME is the data dictionary name
of the field of display type TEXTAREA, LOGAREA or PRINTTEXT.

Field name Explanation

__DDNAME__
A tag with the data dictionary name must be included in the template.
No output occurs with this tag. It is a placeholder that ensures the
remaining fields will be processed correctly

__DDNAME.TEXT__ This is used to return the body of text within the comments
__DDNAME.USER__ This is used to return the name of the user who entered the comment

__DDNAME.TIMESTAMP__
This is used to return the date (and time) that the comment was entered.
This will be returned in the current user’s date and time format that is
defined in their personal settings

Three special tags are not fields in the data dictionary:

Tag name Explanation

__RESULTS__

this tag returns the result string that is sent, upon execution of a call to the
API. For example, if you use an HTML form to insert a record into
ExtraView, and define a template that contains only the tag __RESULTS__,
then the output would be: Problem #12342 added.

__ERR_RESULTS__ this tag returns any error as a result of executing the API command. It is often
used in conjunction with an error handling template, as described below

__RECORD_COUNT__
this tag returns the number of records found from the API action named
search. You may use this field in the header or footer section of a template
(see below), but not in the body part of a template.

The API commands that work with templates are:

• delete
• fill_in
• get
• insert
• insert_user
• list_attachment
• search
• update
• update_user_password

The templates must be stored in a directory in your environment, typically located within your
installation in a directory named user_templates. This directory is placed within your ExtraView
installation, at the same level as the templates directory that resides inside the WEB-INF directory. This
location may vary according to how you installed ExtraView. The ExtraView Administration screens
have a feature that allows you to upload files directly to this directory from your local computer.
Templates are processed slightly differently, according to whether they are intended to generate text or
generate HTML. First, the assumption is that if the template name has a suffix of .html or .htm, then it
is assumed that it will generate HTML code. With all other file suffixes, the assumption is that they
contain text. If they are HTML templates:

• The api calls search and get will have escaping enabled
• Fields that have display_as_url set as attribute in the data dictionary will be rendered as HTML
• Blank or null values in fields will result in being rendered

The template you define can be in one of two forms:

Stand-alone templates, used to format the results

Desired Output

Sample Template Code

<html>
<head>
<title>ExtraView Insert Issue</title>
</head>
<body bgcolor="#FFFFFF">
<p align="center">Thank you for submitting your issue. It has been added to the tracking
database with the ID</p>
<p align="center"> __ID__ </p>
<p align="center">Please take note of this number and use this if you wish to inquire
about the status.</p>
</body>
</html>

Structured Formatting of Results

This is composed of a template structure that may have up to three sections, each of which resides in a
separate file. Each file name is defined by prefixing the template name with the letter h, b or f, according
to whether it is the header section, body section or the footer section. Each section is optional, although
it makes no real sense to not have the body section.

Overall Desired Output

Sample Template Code

The template code is split into three files representing the fixed header, the repeating body and the fixed
footer.

Header File - file name begins with "h"

<html>
<head>

<title>ExtraView Insert Issue</title>
</head>
<body bgcolor="#FFFFFF" leftmargin="0" topmargin="0">
<p></p>
<p>The results of your search found the following records </p>
<table width="100%" border="0" cellpadding="0">

Body File - file name begins with "b"

<tr bgcolor="#CCCCFF">
<td>Issue Number</td>
<td>Status</td>
<td>Assigned To</td>
</tr>
<tr>
<td>__ID__</td>
<td>__STATUS__</td>
<td>__ASSIGNED_TO__</td>
</tr>
<tr>
<td colspan="3">__SHORT_DESCR__</td>
</tr>
<tr>
<td colspan="3"> __REPEAT_START__ __Description__ __REPEAT_STOP__ </td>
</tr>

Footer File - file name begins with "f"

</TABLE>
<hr>
<p><i>MyCo</i> - Your one stop shop for integrated data services
 Powered by
ExtraView</p>
</body>
</html>

The fill_in Template

It is sometimes useful to be able to generate a template and populate it with values that do not originate
in ExtraView’s database. The fill_in action fulfills this need.

Syntax

http://www.myserver.com/evj/ExtraView/ev_api.action?user_id=username
&password=password&statevar=fill_in&p_template_file=this_template.html&id=12345
&any_name_at_all=Phyllis%20Mitchell

The template file, this_template.html, will be returned to the user’s screen, with the values for id and
any_name_at_all filled in.

Sample Template File

<html>
<head>
<title>ExtraView Entry Details</title>
</head>
<body>
<hr>
<p align=center>The ID for the problem is __ID__ and it was entered by
__ANY_NAME_AT_ALL__.</p>
<hr>
</body>
</html>

Browser Output

The error.html Template

If the code that executes in the API command that was submitted completes with an error or unexpected
condition, the template named error.html is invoked and used to display the error to the user. Within this
template, the tag __ERR_RESULTS__ is replaced with the actual error message from the command
being executed.

Sample Template File

<html>
<head>
<title>ExtraView Error!</title>
</head>
<body bgcolor="#cedece">
<hr>
<p align=center>__ERR_RESULTS__</p>
<hr>
</body>
</html>

Browser Output

Executing ExtraView Functions
From within an ExtraView screen, you may want to add a new issue or edit an existing issue. This is
typically driven by the “Display as URL” data dictionary function. This places a button on a form beside
the field described in the data dictionary when you are on the add or edit screens. The “Display as URL”
function can be used to open URL’s both external to ExtraView and internal to ExtraView.

The reasons for doing this are various and typically related to integrating ExtraView with other
enterprise applications.

It is possible to execute many different URLs within ExtraView with this technique, but some may have
unpredictable results, according to the context of the request you are making. This documentation does
not attempt to offer an exhaustive list of supported functions, but lists the most useful functions. Please
contact ExtraView support if your requirement goes beyond this list and you have problems getting the
desired functionality. All commands must be executed on a single line, but are shown with one
parameter per line for clarity.

Common Parameters

Some parameters are common to all commands. These are described as:

Parameter Purpose

p_action This is the name of the Java class within ExtraView that is being called from the
command. This is a mandatory parameter

p_option This is the name of the method within the Java class that is being called from the
command. This is a mandatory parameter

ev_menu
This may have the value of off or on. off is the default. This determines whether a
navigation bar will be placed on the window that is opened as a result of executing the
command, within the standard user interface

p_output_type
This may be one of HTML, PDF, TEXT, MS_EXCEL, MS_FORMATTED_EXCEL or MS_WORD
depending on the output you require. Not all output types are valid for all
functions. The default is HTML

p_close_win
This is typically used with the standard user interface when adding or updating issues.
After the add or update performed by the user, the browser window will be closed if this
parameter is present, with a value of false

ev_signoff

This optional parameter may have the values yes or no. This parameter signs the user
off from their ExtraView session after the command is completed. This command
requires the behavior setting named AUTO_SIGNOFF_ON_USER_EXIT to be set to
YES before it has any effect

In the following commands, part of the URL structure is evSignon. This ensures that the user must go
through the sign on process to reach the page or function. If the user is already signed on, then
ExtraView redirects the user directly to the page. If the user is not signed on, the user must provide their
sign on credentials, and then they are taken to the page.

ExtraView allows a user to open several separate sessions within their browser, if the browser supports
the ability to run concurrent sessions of the same application. In the case that several sessions are open
within the user's default browser and one of the following commands is issued, there is no certainty to
which browser session the command will be serviced. ExtraView has no control over which session the
browser chooses.

Adding an Issue

Syntax

http://www.myserver.com/evj/ExtraView/evSignon
?p_action=doAddDisplay
&p_option=Display
&p_close_win=true
&ev_menu=off
&p_ddname_1=value
... ...
&p_ddname_n=value

Notes

Use the name of your server installation in place of http://www.myserver.com/evj/ExtraView.

If the optional parameter p_close_win has a value of true, then the add window will be closed when the
issue is successfully updated by the user. If you set p_close_win to true, it is recommended that you also
set ev_menu to off.

The optional parameter ev_menu=off will suppress the navigation bar within the new window that is
opened to add the issue.

You may populate fields on the add screen that is generated, by using the convention p_ddname=value.
Note that you should escape text fields containing special characters. For example, to add the title field
to a new issue, you may use a parameter such as:

p_short_descr=This%20is%20the%20title%20of%20the%20issue

If the user is signed on when the command is issued, a new edit window will be opened immediately. If
the user is not signed on, then the user is first taken to the sign on screen where they must sign on,
before being allowed to edit the issue.

If you want to use the behavior setting named SITE_URL within your API call, use the following syntax
in conjunction with the examples below. This syntax shown is most suitable for use within an email
template that utilizes HTML:

<p>Drilldown Link: <a
href="$$SITE_URL$$/ExtraView/link.html?p_action=doEditDisplayEmail&p_option=Dis
play&
p_id=$$ID$$&p_from_action=email&p_from_option=email">Click here to view
issue number $$ID$$</p>

<p>Edit Link: <a
href="$$SITE_URL$$/ExtraView/evSignon?p_action=doEditDisplay&p_option=Display&a

mp;p_id=$$ID$$&p_from_action=search&
p_from_option=search">Click here to edit issue number $$ID$$</p>

Editing an Issue

Syntax

http://www.myserver.com/evj/ExtraView/evSignon
?p_action=doEditDisplay
&p_option=Display
&p_id=nnnnn
&p_from_action=search
&p_from_option=search
&p_close_win=true
&ev_menu=off

Notes

Use the name of your server installation in place of http://www.myserver.com/evj/ExtraView

Replace nnnnn with the issue number you want to edit

If the optional parameter p_close_win has a value of true, then the edit window will be closed when the
issue is successfully updated by the user.

The optional parameter ev_menu=off will suppress the navigation bar within the new window that is
opened to edit the issue. If the user is signed on when the command is issued, a new edit window will be
opened immediately.

If the user is not signed on, then the user is first taken to the sign on screen where they must sign on,
before being allowed to edit the issue.

The Email Drilldown Link
This is a special case of a drilldown used by ExtraView, providing the drilldown from within the body
of an email to ExtraView. It is provided here for completeness, as it can often be used for other
purposes.

Syntax

http://www.myserver.com/evj/link.html
?p_action=doEditDisplayEmail
&p_option=Display
&p_id=nnnnn

&p_from_action=email
&p_from_option=email

Notes

Use the name of your server installation in place of http://www.myserver.com/evj/.

Replace nnnnn with the issue number you want to edit.

If the user is signed on when the command is issued, a new edit window will be opened immediately. If
the user is not signed on, then the user is first taken to the sign on screen where they must sign on,
before being allowed to edit the issue. Prior to version 8.0, the syntax of this link was different. The old
syntax still works, but does not open an issue within the current workspace, and will only open an issue
in a new browser window. If you wish to use the old format, the syntax is:

http://www.myserver.com/evj/ExtraView/evSignon
?p_action=doEditDisplayEmail
&p_option=Display
&p_id=nnnnn
&p_from_action=email
&p_from_option=email
&p_close_win=true
&ev_menu=off

If the optional parameter p_close_win has a value of true, then the edit window will be closed when the
issue is successfully updated by the user. The optional parameter ev_menu=off will suppress the
navigation bar within the new window that is opened to edit the issue.

Running a Detailed Report
This function will allow you to send a URL to ExtraView, and immediately run a detailed report for an
issue. If you are not signed on as a user, ExtraView will take you first to the sign on screen to
authenticate your user details. You must know the id of the issue you want to display to be able to use
this function.

Syntax

http://www.myserver.com/evj/ExtraView/evSignon
?p_option=search.SearchReportDetailDisplay
&p_action=doRunDetailed
&id=nnnnn

Running a Quicklist

Syntax

This example will access ExtraView’s search class and produce a Quicklist report, using the values in
the display field named searchword, and the current values of the product_name and assigned_to fields
as filters for the query.

http://www.myserver.com/evj/ExtraView/
?p_action=doRunQuicklist
&p_option=search.SearchDisplay
&searchword=$$VALUE$$
&product_name=$$PRODUCT_NAME$$
&assigned_to=$$ASSIGNED_TO$$

Running Saved Reports
These functions allow you to send a URL to ExtraView, and immediately run an existing saved report to
your browser. If you are not signed on as a user, ExtraView will take you first to the sign on screen to
authenticate your user details. You must know the report_id of the report you want to run to be able to
use this function.

If you do not know the ID of the report, this is easily found from the report editor for the report type.
Edit the report and place your mouse cursor over the box to the right of the report title. This shows the
details of the report, including its ID. Alternatively, you can execute the API command get_reports, to
see the report_id for all reports.

The p_output_type parameter may be set according to this table:

Report
Type Browser Text MS Word MS Excel

Plain
MS Excel
Formatted PDF

Admin X X X X X X
Aging X X X X X X
Calendar X
Chart X X
Column X X X X X X
Container
Geospatial X X
Layout
History X X X X X X
Matrix X X X X X X
Summary X X X X X X
Taskboard X
Treegrid X X X X X X

Column Reports

http://www.myserver.com/evj/ExtraView/evSignon
?p_option=search.SearchReportDisplay
&p_action=doRunReport
&p_output_type=HTML
&report_id=nn

Matrix Reports

http://www.myserver.com/evj/ExtraView/evSignon
?p_option=search.SearchMatrixReport
&p_action=doRunReport
&p_output_type=HTML
&report_id=nn

Summary Reports

http://www.myserver.com/evj/ExtraView/evSignon
?p_option=search.SearchSummaryReport
&p_action=doRunReport
&p_output_type=HTML
&report_id=nn

Aging Reports

http://www.myserver.com/evj/ExtraView/evSignon
?p_option=search.SearchAgingReport
&p_action=doRunReport
&p_output_type=HTML
&report_id=nn

Calendar Reports

http://www.myserver.com/evj/ExtraView/evSignon
?p_option=search.SearchCalendarReport
&p_action=doRunReport
&p_output_type=HTML
&report_id=nn

Planning Reports

http://www.myserver.com/evj/ExtraView/evSignon
?p_option=search.SearchPlanningReport
&p_action=doRunReport
&p_output_type=HTML
&report_id=nn

Charts

http://www.myserver.com/evj/ExtraView/evSignon
?p_option=search.SearchChartReport
&p_action=doRunReport
&p_output_type=HTML
&report_id=nn

Taskboard Reports

http://www.myserver.com/evj/ExtraView/evSignon
?p_option=search.SearchTaskBoardDisplay
&p_action=doRunReport
&p_output_type=HTML
&report_id=nn

Dashboard Reports

http://www.myserver.com/evj/ExtraView/evSignon
?p_option=search.DashboardReport
&p_action=doRunReport
&p_output_type=HTML
&report_id=nn

Pop-up List of User Details
The purpose of this local function is to allow the administrator to program a user list or user pop-up field
with the ability to pop-up a new child window, with the complete details of the user whose name is
selected in the user list.

An example of how to use this function is to provide a pop-up window for the ORIGINATOR of issues
within ExtraView. To achieve this, set the following text (on a single line) into the data dictionary URL
field for the ORIGINATOR field:

?p_option=admin.UserAccountsDisplay
&p_action=showUserDetails
&p_user_id=$$NAME$$

Now select Yes as the value for the field Display as URL.

Update the field in the data dictionary.

A link button will now appear by the ORIGINATOR field on both the add and edit screens as shown
here.

When you press the link button, a window will pop up that shows the user’s details, similar to the
following.

Static Web Page Access
A common requirement is to be able to integrate ExtraView seamlessly into your own web site, allowing
your own users to use a subset of ExtraView’s capabilities. Most often, these users will be anonymous
within ExtraView (i.e. they will not have their own user name and password), but their user details will
be trapped as part of the record, for follow up.

ExtraView allows you to call it remotely, typically using a guest login, with limited privileges, to
prevent "hacking" by an irresponsible user. The steps to achieving this are typically:

• Create or use an existing GUEST user group within the ExtraView administrative function
• Create a guest user account within ExtraView
• Use the Security Privileges to limit the fields that the GUEST user group can see and update.

These will vary with the installation
• Implement HTML forms within your own website on pages. Most typically, there will be two

such pages. One will allow your users to submit new issues, and one will allow users to search
ExtraView for specific issues or with a keyword search

• This may also be coupled with creating specific fields within ExtraView that are used to store
information that you want your users to see, as opposed to fields that are for internal use by your
engineering or QA or other staff

• You may also use the privacy features of ExtraView. The ExtraView Administration Guide will
help you understand this feature in depth. Issues can be either Public or Private. This means that
only users internal to your company and users within the company that reported the issue have
access to the records if they are Private. If the issues are Public, then everyone can see them. You
may also take a more sophisticated approach, by using Privacy Groups. These allow you to set
up groups of individuals that can see specific issues, irrespective of their user group or other
privileges.

HTML Pages that access ExtraView remotely

The following example shows how suitable pages can be designed. They all use the ability of ExtraView
to support anonymous access, assuming the administrator has provided this facility. See the ExtraView
Administrator’s Guide for more information.

First, let us design a screen that allows our anonymous users to add new issues to ExtraView. It looks
like this:

The HTML source to this page is:

<html>
<head>
 <title>Submit an Issue to MyCo</title>
 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<script>
 function setState(button) {
 if (document.AddIssue.statevar.value != "Submitted") {
 button.form.statevar.value = button.name;
 }
 if (button.value=="Submitted") {
 alert("This form has already been submitted. Please wait.");
 }
 if (button.name =="Submit") {
 if (document.AddIssue.short_descr.value == "") {
 alert("You must enter a title for the issue");
 return;
 }
 if (document.AddIssue.description.value == "") {
 alert("You must enter a description for the issue");
 return;
 }
 document.AddIssue.statevar.value = "INSERT";
 button.value = "Submitted";
 document.AddIssue.submit();

 }
}

</script>
<body bgcolor="#FFFFFF">
 <p><i>Report a New Issue to MyCo
 </i></p>
 <p>Please complete this form to submit your issue. Your issue will be entered
 automatically in our support system and you will receive a response from us.

 <hr>

 <form name="AddIssue"
ACTION="http://myco.extraview.net/myco/ExtraView/ev_api.action"
 METHOD="GET">
 <INPUT NAME="statevar" TYPE="HIDDEN" VALUE="INSERT">
 <INPUT NAME="status" TYPE="HIDDEN" VALUE="SUBMIT">
 <INPUT NAME="assigned_to" TYPE="HIDDEN" VALUE="JIM.SMITH">
 <INPUT NAME="product_name" TYPE="HIDDEN" VALUE="CUSTOMER_ISSUES">
 <table border="0" cellpadding="2">
 <tr>
 <td width="220" valign="top">
 <div align="right">Enter title</div>
 </td>
 <td valign="top" width="625">
 <input type="text" name="short_descr" size="56" maxlength="255">
 </td>
 </tr>
 <tr>
 <td width="220" valign="top">
 <div align="right">Enter description</div>
 </td>
 <td valign="top" width="625">
 <TEXTAREA WRAP="virtual" NAME="description" COLS=50 ROWS=4></TEXTAREA>
 </td>
 </tr>
 <tr>
 <td width="220" valign="top">
 <div align="right">Your name </div>
 </td>
 <td valign="top" width="625">
 <input type="text" name="customer_name" size="40" maxlength="40">
 </td>
 </tr>
 <tr>
 <td width="220" valign="top">
 <div align="right">Your email address</div>
 </td>
 <td valign="top" width="625">
 <input type="text" name="customer_email" size="40" maxlength="40">
 </td>
 </tr>
 <tr>
 <td width="220" valign="top">
 <div align="right">Your phone number</div>
 </td>
 <td valign="top" width="625">

 <input type="text" name="customer_phone" size="40" maxlength="40">
 </td>
 </tr>
 <tr>
 <td width="220" valign="top">
 <div align="right"></div>
 </td>
 <td valign="top" width="625">
 </td>
 </tr>
 <tr>
 <td width="220" valign="top">
 <div align="right"></div>
 </td>
 <td valign="top" width="625">
 <input type="button" name="Submit" value="Submit"
onClick="setState(this);">
 </td>
 </tr>
 </table>

 <hr>
 Copyright © 2002 ExtraView Corporation
Powered by ExtraView
</form>
</body>
</html>

Next, we want to design a web page that will allow the user to search for an issue, either by the ID or by
keywords. We are setting up this page to only search for OPEN issues related to a product named
OUR_PROD. The page will look like this:

The source to this page is as follows:

<html>
<head>
 <title>Search the MyCo Knowledgebase</title>
 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<script>
 function search1(button) {
 document.SearchForm1.submit();
 } function search2(button) {
 document.SearchForm2.submit();
 }
</script>

<body bgcolor="#FFFFFF">
 <><i>Search For Existing
Issues</i></p>
 <p>This form is used to search MyCo's knowledge base for existing issues. Either
enter an issue number to search for a specific problem, or enter one or more
keywords to search the entire database for open issues with the keywords.
</p>
 <hr>

 <form name="SearchForm1"
ACTION="http://myco.extraview.net/myco/ExtraView/ev_api.action" METHOD="GET">
 <INPUT NAME="statevar" TYPE="HIDDEN" VALUE="SEARCH">
 <INPUT NAME="p_PAGE_LENGTH" TYPE="HIDDEN" VALUE="10">
 <INPUT NAME="p_RECORD_START" TYPE="HIDDEN" VALUE="1">
 <INPUT NAME="p_TEMPLATE_FILE" TYPE="HIDDEN" VALUE="file.html">

 <table width="100%" border="0" cellpadding="2">
 <tr valign="middle">
 <td width="30%">
 <div align="right">Search for an Issue #</div>
 </td>
 <td>
 <input type="text" name="p_id" size="50" maxlength="6">
 <input type="button" name="Submit2" value="Search" onClick="search1(this)">
 </td>
 </tr>
 </table>
</form>

<hr>

<form name="SearchForm2"
ACTION=http://myco.extraview.net/myco/ExtraView/ev_api.action METHOD="GET">
 <INPUT NAME="user_id" TYPE="HIDDEN" VALUE="guest">
 <INPUT NAME="password" TYPE="HIDDEN" VALUE="guest">
 <INPUT NAME="statevar" TYPE="HIDDEN" VALUE="SEARCH">
 <INPUT NAME="product_name" TYPE="HIDDEN" VALUE="OUR_PROD">
 <INPUT NAME="status" TYPE="HIDDEN" VALUE="OPEN">
 <INPUT NAME="p_PAGE_LENGTH" TYPE="HIDDEN" VALUE="100">
 <INPUT NAME="p_RECORD_START" TYPE="HIDDEN" VALUE="1">
 <INPUT NAME="p_TEMPLATE_FILE" TYPE="HIDDEN" VALUE="file.html"> <table
width="100%" border="0" cellpadding="2">
 <tr valign="middle">
 <td width="30%">
 <div align="right">Search for keywords</div>
 </td>

 <td>
 <input type="text" name="p_keyword" size="50" maxlength="255">
 <input type="button" name="Submit" value="Search" onClick="search2(this)">
 </td>
 </tr>
 </table> <hr> Copyright © 2002 ExtraView Corporation

 Powered by ExtraView

</form> </body> </html>

Server-side HTML Templates

In order that the search will return neatly formatted HTML in the same style as the rest of your web site,
you will create a server-side ExtraView template. Note the parameter in the source file named
p_template_file that points to the template. For example, we want to return from the search a report that
looks as follows:

The source of the template file is as follows:

<TABLE cellpadding="2" cellspacing="2" border="1" bordercolor="#FFCCCC">
 <TR valign="top" bgcolor="#CCCCFF">
 <TD align=right width=80>Defect #</TD>
 <TD width=800>__ID__</TD>

 </TR>
 <TR valign="top">
 <TD align=right>Title</TD>
 <TD>__SHORT_DESCR__</TD>
 </TR>
 <TR valign="top">
 <TD align=right>Product</TD>
 <TD>__PRODUCT_NAME__</TD>
 </TR>
 <TR valign="top">
 <TD align=right>Description</TD>
 <TD>__DESCRIPTION_TEXT__</TD>
 </TR>
 <TR valign="top">
 <TD align=right>Comments</TD>
 <TD>__COMMENTS_USER__: __COMMENTS_TIMESTAMP__
 __COMMENTS_TEXT__
</TD>
 </TR>
</TABLE>

Note that server-side templates do not need to contain HTML. For example, if you want to output
straight text for a CLI command such as evsearch, then a server-side template can be defined in exactly
the same manner as for the HTML templates. For more information on server-side templates, please
click here.

Automatic Language Translation
ExtraView can be configured to translate a text area field (or similar type of field) from one language to
another. This configuration can be fully automated, or may be driven by a button or other control on an
add or edit screen. The feature utilizes the Google Translate API. At the time of writing, this API
supports translations between more than 50 different languages.

The Google Translate API version 2 is only available from Google as a paid service and is no longer
free of charge (version 1 was a free service). ExtraView provides seamless access to the service, but it is
your responsibility to purchase and maintain the service from Google. At the time of writing the cost of
using the service is $20 USD per 1 million characters translated from one language to another.

When you or your company subscribes to the service, Google provides you with a unique key that must
be embedded into a method within the ExtraView UserJavaScript.js file. The functions within the
UserJavaScript.js file may also be customized to provide the work flow needed. This page shows a
typical implementation, but with a little additional work in JavaScript, this feature may be used in a
whole variety of different ways. The example shows how to translate a text area field from English to
Japanese automatically when the field containing the English text is modified.

https://docs-stg.extraview.com/server-side-templates
http://developers.google.com/translate

The ExtraView behavior setting named ENABLE_GOOGLE_LANGUAGE_API must be set to a value
of YES to enable the feature. This provides the infrastructure within the add and edit screens to support
the translations. Note that all users must have Internet access to reach the Google server to use this
feature.

For this example, we are assuming that we will enter or modify text in the DESCRIPTION field, and
place the translated results into a field named TRANSLATE_RESULTS. The logic is controlled by two
JavaScript functions placed in the UserJavaScript.js file. Follow these steps to configure:

• Turn the behavior setting named ENABLE_GOOGLE_LANGUAGE_API to YES
• ExtraView has a function in the UserJavaScript.js file named ev_translate. The default looks like

this:

/**
 * The ev_translate function is used to call the translateText callback
function to
 * perform the translation of the DESCRIPTION field from one language to
another.
 * This call is initiated via an HTML modifier created as an onchange layout
cell
 * attribute on the field to be translated.
 * For example: ev_translate('en', 'ja') will translate the contents of the
 * DESCRIPTION field from English to Japanese and place the results in the
field
 * TRANSLATE_RESULT.
 *
 * You can modify this function to work with other fields or to work with a
list
 * of langauges.
 *
 * The ev_translate function uses the Google API translation service. This
is not
 * a free service and each customer should obtain a license and their own
KEY_VAL
 * from Google (see https://developers.google.com/translate/).
 *
 * Google and ExtraView Corp. make the following disclaimer if your company
 * utilizes the Google API translation service:
 *

 * THIS SERVICE MAY CONTAIN TRANSLATIONS POWERED BY GOOGLE. GOOGLE AND
EXTRAVIEW
 * CORP. DISCLAIM ALL WARRANTIES RELATED TO THE TRANSLATIONS, EXPRESS OR
IMPLIED,
 * INCLUDING ANY WARRANTIES OF ACCURACY, RELIABILITY, AND ANY IMPLIED
WARRANTIES
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 */
 function ev_translate(from_lang, to_lang) {
 // WARNING: The API-KEY may be viewable by your users.
 // Restrict your key to designated domains or use a proxy to hide your
key to
 // avoid misuse by other parties. Alter API-KEY to the value of the
key
 // provided by Google when you license the Google Translate API.
 var key = 'API-KEY';
 var newScript = document.createElement('script');
 var d = document.editForm;
 var url = 'https://www.googleapis.com/language/translate/v2';
 newScript.type = 'text/javascript';
 var sourceText = escape(d.p_description.value);
 var source = url + '?key=' + key + '&source=' + from_lang +
'&target=' +
 to_lang + '&callback=translateText&q=' +
sourceText;
 newScript.src = source;

 // When we add this script to the head, the request is sent off.
 document.getElementsByTagName('head')[0].appendChild(newScript);
}

This function may be modified, for example to alter the names of the fields being referenced or
to define a different structure for the two languages being referenced. For example, you might
want to trigger the language for the result to be selected from a list.

• The second function in UserJavaScript.js provides the call back processing from the Google API.
It is provided as:

• function translateText(response) {
• try {
• var d = document.editForm;
• var xlat = response.data.translations[0].translatedText;
• d.p_translate_result.value = xlat;
• } catch (err) {
• d.p_translate_result.value = 'Error from Google API: ';
• d.p_translate_result.value += response.error.message;
• }
• }

Again, significant modification may be made to this function. The example here simply
translates the text returned from the Google Translate API and places the result in the
TRANSLATE_RESULT field.

• Make sure you place the DESCRIPTION and the TRANSLATE_RESULT fields on the layouts
where they are to be used and make sure that they have read and write permission

• To trigger the translation, you create an HTML modifier on the DESCRIPTION field within the
add or edit screens where you want to use the feature. This example simply looks for a change in
the content to trigger the translation:

onchange=ev_translate('en', 'ja');

This HTML modifier translates the text within the DESCRIPTION field from English to French
and places the translated text within the TRANSLATE_RESULT field.

add_attachment
This action uploads a file from the local file system to be attached to an existing record in ExtraView. It
is designed to be used within an HTML form. Note that the syntax and usage of this command is
different to other API commands; extra care should therefore be taken when using the add_attachment
command.

SYNTAX

<FORM METHOD="post" action=http://www.myserver.com/dev/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=add_attachment
&p_template_file=template_filename
[&strict=no | yes]
[&access_token=token-value]
>

This command must have additional parameters that are not part of the FORM tag, but are part of the
HTML within the <form> </form> construct. These will be provided as part of the INPUT tags
within the form. The INPUT tags that must be provided are:

Tag name Purpose
p_id The issue ID
p_attach_desc The description of the attachment
file The filename of the attachment

The following example shows how this API command is used from within an HTML form. The example
includes the use of a template file that formats the results returned from ExtraView.

Adding an attachment from an HTML page

<html>
<title>Add an attachment to an existing issue</title>
<body>
<form method="POST"
 action="http://myserver.extraview.net/dev/ExtraView/ev_api.action?
 statevar=add_attachment&p_template_file=attach_results.html&p_id=12345"
 enctype="multipart/form-data">
<input type="hidden" name="p_id" value="12345">
<table>
<tr>
<td>Description</td>
<td><input type="text" size="40" name="p_attach_desc"></td>
</tr>
<tr>
<td colspan="2">Add attachment</td>
</tr>
<tr>
<td>Filename</td>
<td><input type="file" size="40" name="file"></td>
</tr>
<tr>
<td colspan="2"><input type="submit" value="Add Attachment"> </td>
</tr>
</table>
</form>
</body>
</html>

Note that if you are using a template file to return the results of the command, you must include the
parameter named p_id twice within the HTML, once within the <form ...> tag, and once as a hidden
field within the <INPUT ...> tag. This is because of the limitations of how browsers work with multi-
part forms.

attach_results.html template file

This file must reside in the WEB-INF/user_templates directory. Please see the page on server-side
templates for a fuller explanation. Carefully note the following in the example file. The following fields
are available as tags within the template.

You will see in the example that there is a __REPEAT_START__, __REPEAT_STOP__ block. This
allows the display of all attachments added to the issue, with the one just added being the first in the list.
If you only want to see the details of the attachment you just added, you can remove the
__REPEAT_START__ and __REPEAT_STOP__ statements.

https://docs-stg.extraview.com/server-side-templates
https://docs-stg.extraview.com/server-side-templates

<html>
<title> Attachment added to ExtraView </title>
<body>
<p>Attachment added successfully to issue # __ID__</p>

A list of all attachments held in the issue is as follows

<table>
<tr>
<td>File name</td>
<td>Description</td>
<td>File size</td>
<td>Created By</td>
<td>Date Created</td>
</tr>
__REPEAT_START__
<tr>
<td>__FILE_NAME__</td>
<td>__ATTACH_DESC__</td>
<td>__FILE_SIZE__</td>
<td>__CREATED_BY_USER__</td>
<td>__DATE_CREATED__</td>
</tr>
__REPEAT_STOP__
</table>

</body>
</html>

NOTES

• This command uses a different syntax to most other commands within the API. This is to allow
ExtraView to handle the multi-part form, used for uploading files to the server

• You can upload and attach the same file multiple times to a single record within ExtraView
• There are no limits to the number of files that can be attached to a single record
• Each file uploaded can be up to 4 GB in size
• The syntax of this command is likely to change with future versions of ExtraView, to be

consistent with the same action structure as other commands
• The optional parameter strict, with a value of yes, enforces the action to operate only on

ALT_ID. If there is no match for the value of the ALT_ID in the specified ID parameter, then the
message Invalid Id will be returned. This means that a matching ID value will be ignored

• The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password
being sent in clear text over your network connection.

Tag name Purpose
__ATTACH_DESC__ The description of the file that was attached

__ATTACHMENT_ID__ The internal ID of the attachment. Typically not
useful for external purposes

__CREATED_BY_USER__ The user who added the attachment
__DATE_CREATED__ The date the attachment was created

__ID__ The ID of the issue to which the attachment was
added

__FILE_NAME__ The filename of the file attached
__FILE_SIZE__ The size, in bytes, of the attached file
__NFILES__ The total number of files attached to the issue

add_field_list
This action provides a list of all the available fields to the user in a specific order that is used by the
layout for adding new issues within ExtraView. Most typically, this script is used to provide a list of
fields and their titles for inclusion in a Perl script that is used to insert a new record within the
ExtraView database. This action is used as a basis of the CLI evadd command. Note that all of the
ExtraView security is in force and an individual user will only see the fields to which he has access.
Also, note that there is no difference in the way that User Defined Fields (UDF’s) are shown from other
fields. UDF’s are handled in a seamless way within the API.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=add_field_list
[&include_images=1]
[&access_token=token-value]

This will return a list of fields as shown in the following figure. Note that the fields will vary according
to your permissions and the fields defined in your installation.

RESOLUTION Disposition
CUSTOMER Customer
+SHORT_DESCR Title
ALT_ID Alt ID
+PRODUCT_NAME Product
PRIORITY Priority
+CATEGORY Category
SEVERITY_LEVEL Severity
ASSIGNED_TO Assigned To

OWNER Owner
COMPONENT Component
TEST_CASE_ID Test Case ID
TEST_CASE_LOCATION Test Case Location
PLATFORM Platforms
OS OS
PRIVACY View
*WORKAROUND Workaround
*RELEASE_NOTES Release Notes
+*DESCRIPTION Description

NOTES

• The general form of each entry returned by the command is:

<prefix><fieldName><delimiter><fieldTitle><delimiter><parentName>

where the parentName is blank or the immediate parent in an allowed-value or database-type
relationship and the delimiter is that specified in the behavior setting named
DEFAULT_TEXT_REPORT_DELIMITER and the characters in the prefix have the following
meaning:

~ means the field is part of a repeating row layout
* means the field has a display type of textarea or logarea
% means the field has a display type of user

• The parameter include_images is optional. If provided, it always has a value of 1. When the
parameter is provided, fields with a display type of image are included in the results returned

• The optional access_token parameter allows you to use a valid OAuth2 token obtained with the
get_token command. If you provide the access_token parameter, then the user_id and
password parameters should not be provided. This prevents the password being sent in clear
text over your network connection.

add_udf_list
This command inserts new list values into existing user defined list type fields.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=add_udf_list
&udf_name=my_field
&udf_values=val
&access_token=token-value

To add more than one list value with a single API command, you need to have encoded the tab character
separator in your API command.

EXAMPLE

This example adds xxx, yyy and zzz as values to a UDF named my_field.

http://www.myserver.com/evj/ExtraView/ev_api.action? user_id=username&password=password
&STATEVAR=add_udf_list&UDF_NAME=my_field &UDF_VALUES=xxx%09yyy%09zzz

NOTES

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

add_user_to_group
This action adds an existing user to an existing user group.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=add_user_to_group
&security_user_id=userID
&user_group=userGroup
[&access_token=token-value]

NOTES

• You must provide both an existing user and an existing user group
• The command will fail if you pass a name other than security_user_id or user_group
• The command will fail if the user is already a member of the user group
• You must have update permission to the security key named SE_SECURITY_GROUP before

you can execute the command
• The optional access_token parameter allows you to use a valid OAuth2 token obtained with

the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password
being sent in clear text over your network connection.

allowed_list

This command retrieves a list of allowed values for a given parent key. For example, if modules
(MODULE_ID) in your installation are dependent upon products (PRODUCT_NAME), then you can
use this function to find all the valid modules for a given product. The command can also be used to
retrieve the values in a specified list only.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=allowed_list
&field=field_name
&parent=parent_field_name
&parent_val=product_name
[&access_token=token-value]

NOTES

Both the field_name and the product_name must exist else the command will fail. The delimiter of a
colon (:) in the example is the system delimiter stored in the behavior setting named
DEFAULT_TEXT_REPORT_DELIMITER. If you only specify the field without the parent and
parent_val, the command will return a list of all the values of the field.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

EXAMPLE

The following URL retrieves a list of modules for the product named WIDGET.

http://www.myserver.com/evj/ExtraView/ev_api.action? user_id=username
&password=password &statevar=allowed_list &field=MODULE_ID &parent=PRODUCT_NAME
&parent_val=WIDGET

This will produce output similar to the following:

1022:POWER_SUPPLY 1032:CASE 1203:MOTHERBOARD 1255:KEYBOARD 1334:MOUSE 1432:MONITOR

custom
This call invokes the CLI user exit in the UserCustom Java class.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=custom
[&custom_param1=value[&custom_param1=value...]]
[&access_token=token-value]

NOTES

This command works in conjunction with the UserCustom Java class within ExtraView. This command
can be used to create your own API calls that execute any code within the ExtraView environment. It is
therefore a very powerful command that can be used to create any new API command or commands that
you need for any purpose. The custom parameters are optional and may be any name value pairs that
you provide to the new command. The parameters are passed into the UserCustom CLI exit.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

debug
This command sets or resets the internal debug level of messages being sent to ExtraView’s log file.

SYNTAX

http://www.myserver.com/evj/ExtraView?DEBUG=nn

NOTES

The default level for nn is 6. Valid values are in the range 1 through 12. This command affects all users
of ExtraView, no matter how they access the program (CLI, Web interface, API), and the higher the
value, the more the performance of ExtraView is degraded for all users. In addition, considerable more
information is written to the log with higher values of the debug level. Therefore, please ensure the level
is set back to a maximum of 6 in your production environment, if you have altered it while testing
scripts that you are developing.

delete
This action allows you to delete an existing record within ExtraView’s database. Note that you must
have permission to delete records before you can execute this action. The security key that controls this
is named PR_RESOLUTION.DELETE_BUTTON.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=delete
&p_template_file=file.html
&id=nnnnn
[&strict=no | yes]
[&access_token=token-value]

If the issue is deleted without error, the function will return the issue number as shown below. Note that
the term “Bug #” is dependent on the screen title used for the ID field in the data dictionary.

Bug # 12352 deleted.

NOTES

You must provide a valid name and value pair for the ID field. The value must be an existing issue
within the ExtraView database. If you do not provide this, an error message is generated.

The optional parameter strict, with a value of yes, enforces the action to operate only on ALT_ID. If
there is no match for the value of the ALT_ID in the specified ID parameter, then the message Invalid Id
will be returned. This means that a matching ID value will be ignored.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

delete_attachment
This action deletes an existing attachment from ExtraView. Deleting an attachment removes it from the
current issue, but preserves a copy within the history of the issue.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=delete_attachment
&attachment_id=nnnnn
[&access_token=token-value]

NOTES

You must provide an existing attachment_id. You must have update permission to the security key
named PR_RESOLUTION.ATTACHMENT_DELETE before you can execute the command.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

delete_user
This action deactivates an existing user from ExtraView. It does not delete the user record from the
database. This is because historic records contain references to users and their name must remain
available for display.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=delete_user
&security_user_id=userID
[&access_token=token-value]

NOTES

You must provide an existing userID. The command will fail if you pass a name other than
security_user_id. You must have update permission to the security key named SE_SECURITY_USER
before you can execute the command.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

edit_field_list
This action provides a list of all the available fields to the user in a specific order that is used by the
layout for updating existing issues within ExtraView. Most typically this script is used to provide a list
of fields and their titles for inclusion in a script that is used to update an existing record within
ExtraView’s database. This action is used as a basis of the CLI command evupdate. Note that all of
ExtraView’s security is in force and an individual user will only see the fields to which he has access. In

addition, there is no difference in the way that User Defined Fields (UDF’s) are shown compared to
other fields. UDF’s are handled in a seamless way within the API.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=edit_field_list
[&include_images=1]
[&access_token=token-value]

This will return a list of fields as shown in the following figure. Note that the fields will vary according
to your permissions and the fields defined in your installation.

RESOLUTION Disposition
CUSTOMER Customer
+SHORT_DESCR Title
ALT_ID Alt ID
+PRODUCT_NAME Product
PRIORITY Priority
+CATEGORY Category
SEVERITY_LEVEL Severity
ASSIGNED_TO Assigned To
OWNER Owner
COMPONENT Component
TEST_CASE_ID Test Case ID
TEST_CASE_LOCATION Test Case Location
PLATFORM Platforms
OS OS
PRIVACY View
*RELEASE_Notes Release Notes
+*Description Description

NOTES

The general form of each entry returned by the command is:

<prefix><fieldName><delimiter><fieldTitle><delimiter><parentName>

where the parentName is blank or the immediate parent in an allowed-value or database-type
relationship and the delimiter is that specified in the behavior setting named
DEFAULT_TEXT_REPORT_DELIMITER and the characters in the prefix have the following
meaning:

~ means the field is part of a repeating row layout

* means the field has a display type of textarea or logarea

% means the field has a display type of user

The parameter include_images is optional. If provided, it always has a value of 1. When the parameter is
provided, fields with a display type of image are included in the results returned.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

fields
This action provides a list of all the available fields to the user. Note that all of ExtraView’s security is
in force and an individual user will only see the fields to which he has access. Also note that there is no
difference in the way that User Defined Fields (UDF’s) are shown than other fields. UDF’s are handled
in a seamless way within the API.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=fields
&include_fields=y
&select_list=field1 [,field2 [,fieldn]]
[&access_token=token-value]

NOTES

The include_fields=y is an optional name/value pair. If this is included then the output returned by the
command will have the display type of each field returned, following the title of the field. This will
return a list of fields similar to that shown in the following figure. Note that the fields will vary
according to your permissions and the fields defined in your installation.

ASSIGNED_TO Assigned To
CATEGORY Category
COMPONENT Component
DATE_CLOSED Date Closed
DATE_CREATED Created
DAYS_IN_STATUS Days in Queue
DAYS_OPEN Days Open
ID Bug #
MONTHS_IN_STATUS Months In Status
MONTHS_OPEN Months Open
ORIGINATOR Originator
ORIGINATOR_NAME Originator
OS OS

OWNER Owner
PLATFORM Platforms
PRIORITY Priority
PRIVACY View
PRODUCT_NAME Product
RELEASE_FIXED Version Closed
RELEASE_FOUND Version Open
*RELEASE_NOTES Release Notes
RELEASE_STATUS Release Status
RESOLUTION Disposition
SEVERITY_LEVEL Severity
SHORT_DESCR Title
TIMESTAMP Last Modified
TIMESTAMP_MONTH Timestamp Month
TIMESTAMP_WEEK Timestamp Week
WEEKS_IN_STATUS Weeks In Status
WEEKS_OPEN Weeks Open
*WORKAROUND Workaround

The optional select_list parameter allows the entry of one or more field names. When this is
provided, the data returned by the API call only provides the values for the fields in the list.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

get
This API call retrieves an individual record from the ExtraView database. You must know the ID of the
issue in question to be able to extract the information.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get
&id=nnnnn
&p_template_file=file.html
&username_display=ID | LAST | FIRST
&strict=no | yes
[&exclude_data_images=no | yes]
[&access_token=token-value]

The action retrieves a single record in XML format from the database and displays it similarly to the
example shown in the following figure. Note that only fields to which the user has permission will be
displayed. Also, note that it is possible to see repeating fields such as version records within the output.

<?xml version="1.0"?>
<PROBLEM_RECORD>
<ID TITLE="Bug #">12621</ID>
<SHORT_DESCR TITLE="Title"><![CDATA[An error occurs when you overload the power
convertor]]></SHORT_DESCR>
<SEVERITY_LEVEL TITLE="Severity">High</SEVERITY_LEVEL>
<PRIORITY TITLE="Priority">Low</PRIORITY>
<PRODUCT_NAME TITLE="Product">NetPower</PRODUCT_NAME>
<DATE_CREATED TITLE="Created">14-AUG-01</DATE_CREATED>
<OWNER TITLE="Owner">rick</OWNER>
<TIMESTAMP TITLE="Last Modified">15-AUG-01</TIMESTAMP>
<ASSIGNED_TO TITLE="Assigned To">Florence</ASSIGNED_TO>
<PRIVACY TITLE="View">Private</PRIVACY>
<CATEGORY TITLE="Category">Hardware</CATEGORY>
<RESOLUTION TITLE="Disposition">Not found</RESOLUTION>
<DATE_CLOSED TITLE="Date Closed"></DATE_CLOSED>
<ORIGINATOR TITLE="Originator">JON.BJORNSTAD</ORIGINATOR>
<ORIGINATOR_NAME TITLE="Originator">Jon Bjornstad</ORIGINATOR_NAME>
<RELEASE_RECORD>
<RELEASE_FOUND TITLE="Version Open">ADC2</RELEASE_FOUND>
<RELEASE_FIXED TITLE="Version Closed">1.01</RELEASE_FIXED>
<RELEASE_STATUS TITLE="Release Status">Unassigned</RELEASE_STATUS>
</RELEASE_RECORD>
<RELEASE_RECORD>
<RELEASE_FOUND TITLE="Version Open">Framework 1.3</RELEASE_FOUND>
<RELEASE_FIXED TITLE="Version Closed">Framework 1.3</RELEASE_FIXED>
<RELEASE_STATUS TITLE="Release Status">Open</RELEASE_STATUS>
</RELEASE_RECORD>
<Description TITLE="Description"><![CDATA[If you enter an overload trip on the
front panel you will find an error occurs.]]></Description>
</PROBLEM_RECORD>

NOTES

You must provide a valid name and value pair for the ID field. The value must be an existing issue
within the ExtraView database. If you do not provide this, an error message is generated.

The optional parameter USERNAME_DISPLAY may be used to override the behavior setting named
USERNAME_DISPLAY, for the duration of the execution of a single API call. This allows the
developer to return the user names in a different format than the system-wide default.

The optional parameter strict, with a value of yes, enforces the action to operate only on ALT_ID. If
there is no match for the value of the ALT_ID in the specified ID parameter, then the message Invalid Id
will be returned. This means that a matching ID value will be ignored.

The fields returned in the results correspond to the fields on the detailed report layout of the user’s
current business area, current project and current role. However, if the behavior setting named

REPORT_DTL_ITEM_DATA_LAYOUT is set to YES, then the detailed report for the user’s current
role and the issue’s business area and project are used to define the fields being returned.

If the data returned includes an image, the data for the image will be base 64 encoded. However, the
optional parameter exclude_data_images will inhibit images embedded within HTML Area fields
from being output, if set to a value of yes.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

get_areas
This action retrieves a list of areas that exist within the ExtraView database. For a full explanation of
areas, please consult the Administration Guide.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_areas
[&access_token=token-value]

NOTES

The delimiter of a colon (:) in the example is the system delimiter stored in the behavior setting named
DEFAULT_TEXT_REPORT_DELIMITER. The currently selected area for the user who is executing
the command, in their current role is marked with an asterisk (*). Sample return from the get_areas
function:

*0:(default values)
3:Customer
23:Project
43:Incident

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

get_attachment

https://docs-stg.extraview.com/administration-guide

This action downloads a file attached to an existing record in ExtraView to the local file system.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_attachment
&attachment_id=nnnnn
[&access_token=token-value]

NOTES

You can retrieve the filenames and attachment ID’s with the command list_attachment. An example of
this command is:

http://www.myserver.com/evj/ExtraView/ev_api.action?user_id=myuser&password=mypassword&state
var=list_attachment&id=10070

Generates this result:

2010-6-24.9.49.:UserJavaScript.js:3639:ExtraView:23:test:application/x-javascript

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

get_behavior_setting
This action retrieves the value of a behavior setting from ExtraView.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_behavior_setting
&app_default_name=1
[&access_token=token-value]

NOTES

You must provide the name of an existing behavior setting in the get_behavior_setting parameter name.
The result of the function is:

app_default_name:app_default_value

where the delimiter : is the system delimiter stored in the behavior setting named
DEFAULT_TEXT_REPORT_DELIMITER. The =1 in the parameter list is a mechanism to provide a
dummy value. The number 1 has no significance. For a full list of behavior settings and their uses,
please consult the Administration Guide.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

get_field_defaults
This action returns the data dictionary defaults for all data dictionary fields that have a default value set.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_field_defaults
[&access_token=token-value]

NOTES

The information returned from this call is of the format:

field_name:default_value

One row of data is returned for each field in the data dictionary that has a default value.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

get_fields
This API call retrieves specific fields from an individual record from the ExtraView database. You must
know the ID of the issue in question to be able to extract the information.

SYNTAX

https://docs-stg.extraview.com/administration-guide

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_fields
&username_display=ID | LAST | FIRST
&id=nnnnn
&status=1
&priority=1
&short_descr=1
&comments=1
[&all=yes]
[ev_send_xml=true]
[exclude_data_images=no | yes]
[&access_token=token-value]

The action retrieves only the fields requested from a single issue record in the database and displays the
results with one field on each line. Note that only fields to which the user has permission will be
displayed. Also, note that it is possible to see repeating fields such as version records within the output.
The above command with the syntax given will return output similar to:

Configuring the XYZ module results in an error
OPEN
MEDIUM

NOTES

You must provide a valid name and value pair for the ID field. The value must be an existing issue
within the ExtraView database. If you do not provide this, an error message is generated.

The values returned may not be returned in the same order as the parameters you provide.

The values returned are the NAMES or ID’s of the fields set as parameters.

The =1 in the parameter list is a mechanism to provide a dummy value. The number 1 has no
significance.

The optional parameter username_display may be used to override the behavior setting named
USERNAME_DISPLAY, for the duration of the execution of a single API call. This allows the
developer to return the user names in a different format than the system-wide default.

When retrieving log area display type fields, such as the COMMENTS field in the above example, there is
an optional parameter, all=yes. When this is set, you will retrieve all the entries for the log area, not
just the most recent one.

The optional ev_send_xml will send the response to the command in XML format.

If the data returned includes an image, the data for the image will be base 64 encoded. However, the
optional parameter exclude_data_images will inhibit images embedded within HTML Area fields
from being output, if set to a value of yes.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

get_heartbeat
This API call provides an indication of the status of ExtraView.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_heartbeat
[&tasks=yes]
[$access_token=token-value]

NOTES

The return from the server is XML, similar to the following:

<?xml version="1.0" encoding="UTF-8" ?>
 <EV_HEARTBEAT>
 <EV_STATUS>EXTRAVIEW ALIVE</EV_STATUS>
 <DB_STATUS>DB CONNECTION CONFIRMED</DB_STATUS>
 <DB_DATETIME>2003/09/11 11:33:22</DB_DATETIME>
 <FREE_MEMORY>197</FREE_MEMORY>
 <TOTAL_MEMORY>250</TOTAL_MEMORY>
 <HEARTBEAT_EXEC_TIME>330</HEARTBEAT_EXEC_TIME>
 <TASK_INFO TASK=task name>
 <NODE_ID>node name<NODE_ID>
 <START_OPTION>start option</START_OPTION>
 <TASK_STATE>task state</TASK_STATE>
 <POLL_INTERVAL>poll interval seconds</POLL_INTERVAL>
 - [<THREAD_INFO>
 <THREAD_STATE>thread state</THREAD_STATE>
 <SECS_SINCE_EXECUTION>seconds since last execution
 [<PRIORITY>thread priority</PRIORITY>]
 </THREAD_INFO>]
 </TASK_INFO>
 </EV_HEARTBEAT>

In the above, the section on task information is repeated for each configured task on the application
server. The returned information includes:

task name name of the background task, e.g., SESSION_MONITOR,
TASK_CONTROL_TASK, BATCHMAIL, etc.

node name name of the node hosting the evapi service
start option START_NOW, STOP_NOW, START_ON_BOOT, or none
task state STARTED, STOPPED, or ERROR
poll interval seconds the (minimum) number of seconds between polled executions
thread state running or stopped
seconds since last
execution number of seconds since the task was most recently scheduled to run

thread priority the priority of the thread (using Java thread priority values) -- may not appear in
output

The return indicates not only that ExtraView is alive, but also it confirms that a database connection
could be made, that the ExtraView servlet is running on the application server, and that the web server is
running.

Note that the tag named DB_DATETIME and its value provide the current timestamp of the database
server. This can be useful to provide local client applications with the server time of the host ExtraView
application.

The amount of free memory, the total memory and the amount of time the command took to execute are
also returned.

This command can be placed in a script that is run at routine intervals to provide an indication of the
health of the system. Not only can confirmation be made that the system is alive, but the time to execute
the command is available

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

get_list_projects
This API action is a variant of the get_projects API call, which will be used for most purposes. The
get_list_projects command adds the capability to execute user custom code that has been defined. The
command makes a call to the 5-parameter version of frSelectListuser custom callout to allow for
filtering of the project list returned to the user from the command.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_list_projects
&area_id=nn
[&access_token=token-value]

NOTES

To provide further refinements with this API command, it is protected by a security permission key
named CF_GET_PROJECTS_API. If the user's current role does not have read permission to this key,
the user custom exit will see an exception.

The value of the area_id, nn, must exist in the database, else the command will fail.

The asterisk (*) in the return shows the currently selected project.

The delimiter ‘:’ in the example is the system delimiter stored in the application default named
DEFAULT_TEXT_REPORT_DELIMITER.

Sample return from the get_list_projects function:

*0:(default values)

1:Customer Projects

2:Internal Projects

3:Documentation

4:Marketing Requirements

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

get_log
This command returns the contents of the ExtraView application server log.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_log
[&access_token=token-value]

NOTES

ExtraView makes a check to ensure that the user requesting the log has administrative privileges, as
indicated by the behavior setting named ADMIN_BYPASS_GROUP being one of the user roles that the
user may adopt. If the user does not have this access, they will not be able to execute this command
successfully.

The output from this command may be substantial in size.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

get_projects
This action retrieves a list of projects that exist within an area in the ExtraView database. For a full
explanation of areas and projects, please consult the Administration Guide.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_projects
&area_id=nn
[&access_token=token-value]

NOTES

The value of the area_id, nn, must exist in the database, else the command will fail.

The asterisk (*) in the return shows the currently selected project. The delimiter ‘:’ in the example is the
system delimiter stored in the application default named DEFAULT_TEXT_REPORT_DELIMITER.

Sample return from the get_projects function:

*0:(default values)

https://docs-stg.extraview.com/administration-guide

1:Customer Projects

2:Internal Projects

3:Documentation

4:Marketing Requirements

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

get_reports
This function retrieves a list of available reports for a given user.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_reports
[&access_token=token-value]

NOTES

The delimiter ‘:’ in the example is the system delimiter stored in the behavior setting named
DEFAULT_TEXT_REPORT_DELIMITER.

The typical use of this command is to retrieve a list of available shared and private reports, to present
these as a menu and allow the user to select which report he is going to run with the run_report function.

There are two main sections returned, a list of private: and a list of public: reports

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

Within each of these sections, each report is shown with four values, separated by the
DEFAULT_TEXT_REPORT_DELIMITER and specified as:

1. Report ID – a numeric identifier for the report

2. Title – the title of the report

3. Type – One of the following types:

Type Purpose
ADMIN_REPORT Admin Report
ADVANCED Column report with advanced filters
AGING Aging reports with standard filters
AGING_ADV Aging reports with advanced filters
CALENDAR Calendar report with standard filters
CALENDAR_ADV Calendar report with advanced filters
CHART Charts with standard filters
CHART_ADV Charts with advanced filters
CONTAINER Container reports
CUSTOMURL Custom URL report with standard filters
CUSTOMURL_ADV Custom URL report with advanced filters
DASHBOARD Dashboard report
DETAILED Detailed reports
GEOSPATIAL Geospatial reports with standard filters
GEOSPATIAL_ADV Geospatial reports with advanced filters
MATRIX Matrix report with standard filters
MATRIX_ADV Matrix report with advanced filters
PAGE_LAYOUT_CHR Page Layout chart
PAGE_LAYOUT_COL Page Layout Column report
PAGE_LAYOUT_DGB Page Layout Double Group By report
PAGE_LAYOUT_SGB Page Layout Single Group By report
PLANNING_ADV Planning report with advanced filters
QUICKLIST QuickList reports
STANDARD Column reports with standard filters
SUMMARY Summary reports with standard filters
SUMMARY_ADV Summary reports with advanced filters
TASKBOARD Taskboard reports with standard filters
TASKBOARD_ADV Taskboard reports with advanced filters
TREEGRID Treegrid reports with standard filters
TREEGRID_ADV Treegrid reports with advanced filters

Sample return from the get_reports function:

private:

169:All Features Requests:STANDARD:That are open

94:Bugs I Fixed in January:STANDARD:Bugs not Closed Yet

99:Bugs Open By Month:CHART:For Tracker Enterprise

401:Build

30:STANDARD:Estimated versus Actual Time

89:My Hot Llist:STANDARD:Priority 1 issues that are not closed

73:Open and Fixed Defects:CHART:Year to Date

114:Owners of open bugs:STANDARD:Sorted by owner

119:Report of Open issues:STANDARD:By Bill

109:Status of Bugs Reported:CHART:Over all bugs public:

144:Bug Trend Report:CHART:Open vs. Fixed Issues

391:Bugs:AGING:Aging of all bugs that are not closed

4:Bugs - Assigned to you:SUMMARY:Issues assigned by product

164:Bugs - List of Closed Issues:STANDARD:Ordered by Product

68:Bugs - No Reproducible State:STANDARD:Open Issues

386:Customer Issues:AGING:Aging of all issues

43:Customer Issues:STANDARD:New Issues By Priority

48:Customer Issues:STANDARD:Open Issues By Priority

249:Customer Issues - Time Spent:STANDARD:Items fixed

58:Feature Requests:SUMMARY: Requests By Product and Category

239:Helpdesk Issues:STANDARD:New / Open Issues Assigned to Me

234:Helpdesk Issues:ADVANCED:Open Issues

209:Knowledge Base:ADVANCED:Published Articles

214:Knowledge Base:ADVANCED:Unpublished Articles

79:My Open Issues:STANDARD:for Home Page

33:Open P1 Issues:STANDARD:All Areas - Ordered by Assigned To

3:Originated by you:SUMMARY:Issues originated by you

63:QA List - Fixed Defects:STANDARD:Ordered by Priority

84:Summary of All Issues:CHART:Chart of All Statuses

53:Summary of Open Customer Issues:SUMMARY_ADV:By Product

get_roles
This action retrieves a list of available roles for a given user.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_roles
[&access_token=token-value]

NOTES

The delimiter ‘:’ in the example is the system delimiter stored in the application default named
DEFAULT_TEXT_REPORT_DELIMITER.

The asterisk (*) indicates the current role of the user.

Sample return from the get_roles function:

ENGINEERING:Engineering

*QA:Quality Assurance

MNGMT:Management

ADMIN:Administrator

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then

the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

get_title
This action retrieves the title of a field from the ExtraView data dictionary, by providing its field name.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_title
&dd_name=1
[&access_token=token-value]

NOTES

You must provide the name of an existing database dictionary field in dd_name.

The =1 in the parameter list is a mechanism to provide a dummy value. The number 1 has no
significance.

The result of the function is:

dd_name:title

where the delimiter : is the system delimiter stored in the behavior setting named
DEFAULT_TEXT_REPORT_DELIMITER.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

get_token
This command retrieves a token from an ExtraView instance, in order that the token may be used in
subsequent API calls without the need for these subsequent API calls to send the password in clear
text. The protocol used to generate the token and to apply this is termed OAuth2. When a valid token is
generated, it has an expiry date and time, based upon the value in the behavior setting
named OAUTH2_TOKEN_LIFETIME_SECONDS. After the token expires, a new token must be
requested, again using the get_token command. If an API request is made using an expired token, the
server treats the call as an invalid sign on and access is refused.

SYNTAX

https://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_token
[&ev_send_xml=false | true]

NOTES

The token is returned as plain text, unless the parameter ev_send_xml is set to true, in which case the
token is returned within an XML format.

EXAMPLES

Example 1: Send the URL:

https://www.myserver.com/evj/ExtraView/ev_api.action?user_id=my_user_id&password=my_
password&statevar=get_token

This returns:

Token:x3o4xNX8xYm4gRE5YrtLPq3Bybtav9Xao8VBI1oPtz8
Type:Bearer
Lifetime:3600
Expiration Date:2020-07-02 18:39:48.818 -0700
Scope:read write

Example 2: Send the URL:

https://www.myserver.com/evj/ExtraView/ev_api.action?user_id=bsmith&password=bill&st
atevar=get_token&ev_send_xml=true

This returns:

<?xml version="1.0" encoding="UTF-8"?>
 <access_token>
 <value> ayBNRrDElFvyv7yrTlT2rAiOkCtth1Ez9M7cQyh1hHc </value>
 <type> Bearer </type>
 <lifetime> 3600 </lifetime>
 <Expiration Date> 2020-07-02 18:39:48.818 -0700 </lifetime>
 <scope> read write </scope>
 </access_token>

At this point in time, the type and scope within the returned data have no meaning.

Once a valid token is returned, you may use this in subsequent API calls, with the following being an
example - note there is no User ID or Password parameters:

https://www.myserver.com/evj/ExtraView/ev_api.action?
access_token=ayBNRrDElFvyv7yrTlT2rAiOkCtth1Ez9M7cQyh1hHc&statevar=fields&include_fi
elds=y

get_user_field_list
This function returns a list of the field and field titles for the security user object in ExtraView.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_user_field_list
[&access_token=token-value]

NOTES

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

Sample output:

+SECURITY_USER_ID:User Id
+FIRST_NAME:First Name
+LAST_NAME:Last Name
+SECURITY_PASSWORD:Password
+EMAIL:Email Address
+USER_ROLE:User Group
+ALPHA_TIMEZONE:Time zone
LANGUAGE:Language
JOB_TITLE:Job Title
COMPANY_NAME:Company Name
ADDRESS_LINE1:Address 1
ADDRESS_LINE2:Address 2
CITY:City
STATE:State/Province
POSTAL_CODE:Zip/Postal Code
COUNTRY:Country
REGION:Region
WORK_TELEPHONE:Work Phone
HOME_TELEPHONE:Home Phone

CELL_PHONE:Cell Phone
FAX:Fax
PAGER:Pager
AREA_ID:Area Id
PROJECT_ID:Project Id
START_PAGE_ID:Start Page
USER_FIELD_1:User Field 1
USER_FIELD_2:User Field 2
USER_FIELD_3:User Field 3
USER_FIELD_4:User Field 4
USER_FIELD_5:User Field 5
USER_FIELD_6:User Field 6
USER_FIELD_7:User Field 7
USER_FIELD_8:User Field 8
USER_FIELD_9:User Field 9
USER_FIELD_10:User Field 10
LOGIN_ID:Alternative User Id
LDAP_UPSERT_TIME:LDAP Upsert Time

get_user_info
This command retrieves the values for a user's personal information. Only fields to which the inquiring
user has permission will be returned.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_user_info
<&login_id=username2> || <security_user_id=username2>
[&access_token=token-value]

NOTES

The user_id belongs to the user making the request. This user reuires administrative level access to
retrieve the information for users other than theirself or they require read access to the
USER.USER_ACCESS_UDF_DATA security permission key. Either the login_id or the
security_user_id of the user being inquired upon must be provided. The security_user_id is the user ID
of the user being inquired upon.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

This is a sample of the data returned from the get_user_info API call. Note that the delimiter is that set
in the behavior setting named DEFAULT_TEXT_REPORT_DELIMITER:

LOGIN_ID:A
LAST_NAME:Smith
FIRST_NAME:Bill
JOB_TITLE:Manager
WORK_TELEPHONE:(831) 461-7100
HOME_TELEPHONE:
CELL_PHONE:(831) 555-1212
FAX:
PAGER:
COMPANY_NAME:Superior Software Corporation
ADDRESS_LINE1:269 Mount Hermon Road
ADDRESS_LINE2:
CITY:Scotts Valley
STATE:CA
POSTAL_CODE:95066
COUNTRY:USA
ENABLED_USER:Y
USER_FIELD1:Yes
USER_FIELD2:Engineer

get_users
This command retrieves the list of users within ExtraView.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_users
&disabled=[Y|N|ONLY]
&filter=pattern
&filter_type=[ID|FIRST|LAST]
[&access_token=token-value]

NOTES

The disabled parameter is optional. If provided, the optional values are:

Y Return disabled users as well as enabled users
N Return enabled users only. This is the default
ONLY Only return disabled users

The filter parameter is optional. This allows you to perform a wildcard pattern search for specific user
records. The wildcard character is an asterisk (*) and you may have more than one of them in the
pattern. For example:

*OB Return all records where the user ID ends with the letters OB. For example, this will
return BOB but not ROBERT

OB This would return both BOB and ROBERT

The filter_type parameter is optional. If provided, the optional values are as follows. You may provide
multiple filter_type parameters in a single get_users call, each with one of the three possible values.

ID This returns the User ID, from the security_user.security_user_id column of the user
table

FIRST This returns the first name, from the security_user.first_name column of the user table
LAST This returns the last name, from the security_user.last_name column of the user table

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

get_valid_meta_data
This action retrieves a complete list of the metadata stored in ExtraView.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_valid_meta_data
&fields=field_x
&user_info=x
&disabled_values=Y
&all=Y
[&access_token=token-value]

NOTES

This function can return a significant amount of data, depending on your installation.

By default, the data returned is for the user’s current area and project only.

By default, the data returned is also filtered by any allowed values. For example, if there is an allowed
value with the field named STATUS as the parent, then only the child records in the current area will be
returned.

The previous two default conditions can be overridden, by using the optional parameter all=Y as part of
the call.

The optional parameter fields can be used to refine the metadata returned to a single, or to a list of fields.
For example, fields=CUST_LIST will return the metadata associated with the CUST_LIST field. You
can repeat this parameter as many times as you need in the parameter list, to return the metadata on a
number of fields with a single command.

The optional parameter disabled_values wlil return all the users, including those that are disabled, within
the output to the command.

The optional parameter user_info has three possible functions:

1. When no parameter is specified, the command works as documented in the other sections of this
page

2. When the parameter has a value of N then no user information is generated in the return of the
call

3. When the parameter has a value of Y then one set of generic information is returned, with
SECURITY_USER_ID being used as the field ID.

The security permissions for each field are checked for the user performing the API command, and only
fields to which the user has read permission are returned.

The result of the function is in the form:

field_name:meta_data_name:meta_data_title

where the delimiter : is the system delimiter stored in the behavior setting named
DEFAULT_TEXT_REPORT_DELIMITER.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

A small sample of data returned is shown below - note the delimiter in this case is the | character:

CATEGORY|ENHANCEMENT|Enhancement

CATEGORY|HARDWARE|Hardware

CATEGORY|SOFTWARE|Software

OS|5755|FREEBSD OS|5721|LINUX

OS|5913|NetBSD

OS|5711|SOLARIS

OS|5752|WINDOWS 95

OS|5787|WINDOWS 98

OS|5704|WINDOWS NT

PRIORITY|0|0

PRIORITY|1|1

PRIORITY|2|2

PRIORITY|3|3

PRIORITY|4|4

PRIORITY|5|5

PRIVACY|PRIVATE|Private

PRIVACY|PUBLIC|Public

PRODUCT_NAME|GLOBALINTERACTION|Global Interaction

PRODUCT_NAME|NETTRANSACTIONS|Net Transactions

RELEASE_STATUS|CLOSED|Closed

RELEASE_STATUS|FIXED|Fixed

RELEASE_STATUS|OPEN|Open

RELEASE_STATUS|PENDING|Pending

RELEASE_STATUS|UNASSIGNED|Unassigned

RESOLUTION|CANNOT DUPLICATE|Cannot Duplicate

RESOLUTION|DEFERRED|Deferred

RESOLUTION|DUPLICATE|Duplicate

RESOLUTION|FIXED|Fixed

RESOLUTION|NEED MORE INFO|Need more info

SEVERITY_LEVEL|CRITICAL|Critical

SEVERITY_LEVEL|HIGH|High

SEVERITY_LEVEL|LOW|Low

SEVERITY_LEVEL|MEDIUM|Medium

history
The history API command returns all the changes to item records, from a specified point in time to the
current time.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=history
&cutoff=timestamp
[&cutoff_end=timestamp]
&evhist_sellist=selectionList
[&hist_range_end=timestamp]
[&hist_range_start=timestamp]
[&username_display=ID | LAST | FIRST]
[&dd_name_n=value]
[&show_attributes=YES | NO]
[&access_token=token-value]

NOTES

The timestamp refers to the ITEM.LAST_DATE_UPDATED and the
ITEM_HIST.LAST_DATE_UPDATED fields in the database. It is provided within the command in a
value of any valid format allowed by ExtraView. If the value supplied can be misconstrued, the user’s
locale is used to determine the meaning of the date.

The cutoff timestamp provides the current value of the fields. The cutoff timestamp value is not included
in the issues generated by this command; that is, the comparison is item timestamp is greater than cutoff
timestamp. The cutoff parameter is required.

The cutoff_end parameter is optional. If omitted, there all issues up until the current time are retrieved.
If provided, the value must be greater than the value of cutoff. This can be used to limit the items for
which history is generated to a specific time period.

The evhist_sellist parameter is a comma-delimited list of field names. This is an optional parameter, and
if provided is a list of the fields that are output by the command. If it is not provided, the field list is
taken from the detailed report of the user’s current business area and project.

hist_range_start and hist_range_end are optional parameters. If omitted, then the items retrieved are
generated based upon updates that occured between these times. If provided then the query becomes a
range query, where hist_range_start is the beginning time and hist_range_start is the end time of the
updates to the records retrieved.

The optional parameter username_display may be used to override the behavior setting named
USERNAME_DISPLAY, for the duration of the execution of a single API call. This allows the
developer to return the user names in a different format than the system-wide default.

dd_name_n=value represents an optional list of name value pairs to be used as filters on the query that
returns results for the command.

The fields returned by the command are formatted as XML data.

The fields returned in the XML data are subject to two restrictions. The user must have read permission
for the field, and the field must exist on the detailed report layout for the user’s current area and project
settings.

The item fields returned by the command are in the same XML format as those returned by the API get
command.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

The item fields returned may contain repeating row data within the XML. If a deleted item record is
encountered in the returned data, this will be shown in the XML as follows –

<DELETED_RECORD ID='item id' FULL_TIMESTAMP='issue timestamp'/>

This command provides a convenient method of determining all changes to the ExtraView database
since a point in time, to be used to synchronize data with another ExtraView instance, or with a
completely separate application (For example, ExtraView enables the synchronization of data with the
Perforce SCM system with this command).

import_allowed_values

This API call imports a tab-delimited file of parent and child values into the ExtraView database. Unlike
most API commands (but similar to the add_attachment command), this command is designed to be
used within an HTML page.

SYNTAX

<form method="POST" http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=import_allowed_values
&file=filename
&area=area_id
&project=project_id
&parent=parent_dd_name
&child=child_dd_name
&enctype="multipart/form-data">
[&access_token=token-value]
</form>

The form to be uploaded when prompted by the form must have the following tab-delimited format,
where --> represents the tab character:

parent_value1 --> child_value1

parent_value1 --> child_value2

parent_value2 --> child_value3

parent_value2 --> child_value4

NOTES

area_id specifies the area_id into which the allowed values will be imported. You can use the Business
Area list administration utility in the web interface to see the ID’s for all areas.

project_id specifies the project_id into which the allowed values will be imported. You can use the
Project list administration utility in the web interface to see the ID’s for all projects.

parent_dd_name specifies the data dictionary name of the parent field which has the allowed value
relationship with the specified child.

child_dd_name specifies the data dictionary name of the child field which has the allowed value
relationship with the specified parent.

The values in both the parent and child allowed value lists must already exist to work with this
command.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

EXAMPLE

The following HTML file can be used as a simple template for this command:

<html>

 <body>

 <form method="post" action="http://www.mycompany.com/evj/ExtraView/ev_api.action?

 user_id=username&password=password&statevar=import_allowed_values&

 area_id=0&project_id=0&parent=IT_BUILDING&child=IT_BUILDING_FLOOR"

 enctype="multipart/form-data">

 <input type="file" name="file" id="file" size="1" value="" maxlength="256">

 <input type="submit" value="Upload Attachment(s)" class="menuButton"

 title="Click to process and upload the attachments you have selected">

 </form>

 </body>

</html>

insert
This API call inserts a new record into the ExtraView database. All fields are treated as optional, and all
defined business rules are executed and checked before and after the record is inserted (the preupdate
and postupdate rule directives). The fields used with this command are typically those that are placed on
the ADD_PROBLEM layout for the business area and project specified in the command syntax.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password

&statevar=insert
&p_template_file=file.html
&username_display=ID | LAST | FIRST
&send_email=no
&field_name1=value1 [&field_name2=value2] [&field_name_n=valuen]
[&access_token=token-value]

There are two name-value pairs that can be provided, that are not fields within ExtraView. These are –

1. &send_email=no

If you supply this name and value, then the insert will override the standard default with which
ExtraView will generate email upon the submission of a new issue

1. &username_display=ID | LAST | FIRST

The optional parameter USERNAME_DISPLAY may be used to override the behavior setting named
USERNAME_DISPLAY, for the duration of the execution of a single API call. This allows the
developer to return the user names in a different format than the system-wide default.

If the issue is added to the database without error, the function will return the issue number as shown
below. Note that the term “Bug #” is dependent on the screen title used for the ID field in the data
dictionary.

Bug # 12352 added.

NOTES

You must not provide a name and value for the ID field. ExtraView allocates all new issue numbers
internally and any attempt to provide an ID will result in an error message, similar to "You cannot
provide a Bug # when you are adding a new issue."

Many of the fields within the ExtraView database, such as product_name, status, priority, severity_level,
assigned_to, category, etc., must be given valid values that already exist within the meta-data of your
installation. If you attempt to enter a value that is not known to ExtraView, an error message will result.

If you attempt to contravene a business rule, an error message will result. For example, if your
installation only allows new issues to be SUBMITTED and you immediately attempt to provide a value
of CLOSED when inserting a record, an error message will result.

Also, note that special non-alphabetic characters, such as a space, must be “escaped”.

You may optionally specify the values for the AREA and PROJECT into which the issue is to be
inserted, using their numeric ID. These ID’s can be seen within the administration utilities in the web
interface. You may not use their titles. If you do not specify the AREA and PROJECT within the
parameter list, then the current AREA and PROJECT of the current user are used. For example, use:

... ... &p_area=3&p_project=58

All field permissions are obeyed with the command, and if you attempt to insert a field that does not
have write permission, then the whole command will fail.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

Inserting Document & Image type fields

These fields require additional metadata in the form of a description and the file to upload's character
set. You will have created an HTML form for the upload. An HTML snippet that shows how to make
this work is as follows:

Image Description: <input type="text" name="image_desc"
value="image_dd_name desc" />

<input type="hidden" name="image_dd_name_charset" value="UTF-8" />
File to upload: <input type="file" name="image_dd_name" />

This form assumes an image field that has a data dictionary name of image_dd_name. Note the optional
charset and desc. The charset is not required for image fields, but for documents it can be useful. The
default, if charset is not given is UTF-8.

insert_user
This action creates a new user in the ExtraView database.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=insert_user
&p_template_file=file.html
&company_name=user_company

&email=email_address
&security_user_id =userID
&last_name=user_last_name

[&first_name=user_first_name]
[&security_password=password]
[&job_title=user_job_title]

[&address_line1=user_address_line_1]
[&address_line2=user_address_line_2]
[&city=city]
[&state=state]
[&postal_code=postal_code]
[&country=country]
[&work_telephone=work_telephone]
[&home_telephone=home_telephone]
[&cell_phone=cell_phone]
[&address_line1=user_address_line_1]
[&fax=fax]
[&pager=pager]
[&access_token=token-value]

NOTES

You must always provide security_user_id, security_password, first_name, last_name and email as
fields.

If the ExtraView application default named ENFORCE_DETAILED_USER_INFO has a value of YES,
then the COMPANY_NAME, ADDRESS_LINE1, CITY, STATE, POSTAL_CODE and
WORK_TELEPHONE must be provided.

The command will fail if the security_user_id already exists.

You must have update permission to the security key named SE_SECURITY_USER before you can
execute the command.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

insert_xml
This action inserts a new record or records in the ExtraView database from input formatted with XML.
The input can be made as part of the HTTP data stream, or can be input from a file in XML format.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=insert_xml
&xml_file_name=filename | &xml_string=xml_data

&p_template_file=file.html
[&access_token=token-value]

NOTES

The statevar must be insert_xml.

Provide either the xml_file_name or xml_string, but not both. You provide xml_file_name if the input is
from a file that exists at the time of the execution of the command. You provide xml_string, if the data
for the insert is provided as part of the HTTP request. This string contains the XML data to be parsed.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

p_template_file is the name of the template to be used for return value string generation. Generally, this
template file is stored on the server in the WEB-INF/user_templates directory. On normal completion of
the operation, this template undergoes parameter substitution with the following variable names:

Tag Explanation

__ID__ The item number of the last item
inserted

__NUMBER_ITEMS_INSERTED__ The number of inserted items

__ITEM_TITLE__ The title of the ITEM_ID dictionary
entry

See the section on Templates for a full explanation of how to create user templates. If no template file is
requested, the command returns a completion message to the calling program via HTTP.

On error completion, the return string contains an error message substituted into the error.html user
template in the format:

error-message "at line=xxx and column number=yyy"

where xxx and yyy are the values returned by the XML parser.

As an example, the following message may be returned:

"The end-tag for element type "ITEM" must end with a '>' delimiter at line=8 and column number=9"

Only one record should be inserted with the XML_STRING in one call to the API. When the input is in
a file, there is no restriction to the number of records in a single operation.

The Administration Guide contains additional information, including the DTD for the XML data and a
list of all possible errors.

item_exists
This action checks the ExtraView database for the existence of an issue.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=item_exists
&id=nnnnn
[&strict=no | yes]
[&access_token=token-value]

NOTES

The output from the call is of the form Defect #nnnnn exists or Defect #nnnnn does not exist.

The optional parameter strict, with a value of yes, enforces the action to operate only on ALT_ID. If
there is no match for the value of the ALT_ID in the specified ID parameter, then the message Invalid Id
will be returned. This means that a matching ID value will be ignored.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

list_attachment
This action allows you to obtain a list of files attached to an existing record in the ExtraView database.
Most importantly, you are able to get a list of the attachment ID’s, allowing you to distinguish between
the files attached to an issue, for the download action.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=list_attachment
&p_template_file=file.html

https://docs-stg.extraview.com/administration-guide/import/export/import-and-export/import-item-data

&id=nnnnn
[&strict=no | yes]
[&access_token=token-value]

The return from this command may look like this:

12-JUN-2001:index.html:804:Rather, Gary:21:The index.html as revised
14-JUN-2001:Applic.doc:28160:Koppel, Carl:38:Application notes

NOTES

The delimiter is the value of the DEFAULT_TEXT_REPORT_DELIMITER in the ExtraView
application defaults. The order of the fields returned is date of upload, filename, file size (in bytes),
name of person who uploaded the attachment, ID of the attachment and the description.

The optional parameter strict, with a value of yes, enforces the action to operate only on ALT_ID. If
there is no match for the value of the ALT_ID in the specified ID parameter, then the message Invalid Id
will be returned. This means that a matching ID value will be ignored.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

run_report
This function runs an existing report, using its report_id obtained from the get_reports function.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=run_report
[&username_display=ID | LAST | FIRST]
[&api_reverse_lookup=NO | YES]
&report_id=nnnn
&page_length=100
&record_start=1
&record_count=120
[&p_output_type=MS_EXCEL | MS_WORD | PDF | TEXT]
[&persist_handle=xxx]

[&exclude_data_images=no | yes]
[&field1=value1] [&field2=value2] [&fieldn=valuen]
[&access_token=token-value]

NOTES

• This command runs a report from the available list of public and private reports using the
report_id obtained from the get_reports function

• The report may be output to different file formats with the
optional p_output_type parameter. You may output the report to Microsoft Excel, Microsoft
Word, Adobe PDF or text. If the parameter is not provided, the report will output to XML

• The fields returned in the results correspond to the fields defined within the report
• The parameter report_id specifes the ID of the report as stored in ExtraView. This ID may be

seen on the report screen or within the report editor for the report
• The parameter named page_length is required and gives the ExtraView API the maximum

number of records to return with one call. In conjunction with the parameter named
p_record_start, you can build JavaScript functions to retrieve paginated results, if you believe
your searches can bring up large number of records

• The parameter named record_start is required and gives ExtraView the number of the first record
in the search results to display. This is used in conjunction with the parameter named
p_page_length, which defines the number of results to retrieve. If there is a possibility that
record_start can be greater than page_length, you must use the parameter named record_count.
Using these parameters, you can build functions to retrieve paginated results if you believe your
searches can bring up large number of records

• The optional parameter api_reverse_lookup has a default value of NO. If set to YES, then all the
user defined field values are expressed with the field titles as opposed to the field's UDF_ID or
NAME. This is used when the report has runtime filters, to simplify the operation of the
command for end users who may not be aware of the ID's and NAME's of fields

• The optional parameter username_display may be used to override the behavior setting named
USERNAME_DISPLAY, for the duration of the execution of a single API call. This allows the
developer to return the user names in a different format than the system-wide default. The
optional parameter named persist_handle may be used to paginate the result set by spreading the
results returned over several separate calls using this API command. The persist_handle
identifies the result set, qualified by the user_id, that is used to maintain the result set
information across multiple API calls. The rules for using persist_handle are as follows:

o A new result set is generated whenever record_start=1; an existing result set is used
whenever record_start > 1

o The same persist_handle value can only be used for subsequent pages of the result set on
the same node; in clustered environments, if a subsequent call is directed to another node,
the result set will not be found and results will not be returned

o The maximum number of pages returned is 10. This means that the page_length must be
greater than 1/10th the size of the result set (# of rows returned) or the results will be
truncated with no error indication.

• The parameters represented by field1=value1 and field2=value2 provide runtime filters that are
required by the report. For a name value pair to be valid with this API call, the field must have
been defined within the report as a runtime filter. You must provide a name value pair for each

and every runtime filter in the report you are running. Failure to do this will result in an error
being displayed. More sophisticated runtime filters may be defined as follows in the following
example. This defines 3 runtime filters, each predefined in the report editor within the desktop
user interface:

o The predefined example runtime filers are:
 DATE_CREATED - Date Created
 TIMESTAMP - Last Modified
 PRIORITY - Priority

o The example parameters for the call are:

user_id=xx&password=xx
&statevar=run_report
&page_length=100
&record_start=1
&username_display=LAST
&report_id=1234
&api_reverse_lookup=YES
&p_ql_search_mode=ADVANCED
&p_fset=0
&p_fieldName=DATE_CREATED
&p_operator=between
&p_value1_EVDISPLAY=09/01/2017
&p_mvalue1=09/01/2017
&p_value2=09/30/2017
&p_fset=0
&p_fieldName=TIMESTAMP
&p_operator=>
&p_value1_EVDISPLAY=09/08/2017
&p_mvalue1=09/08/2017
&p_fset=0
&p_fieldName=PRIORITY
&p_operator==
&p_value1_EVDISPLAY=P 2
&p_mvalue1=

o The basic syntax of each runtime filter is a set of following six form parameters

1. p_fset
2. p_fieldName
3. p_operator
4. p_value1_EVDISPLAY
5. p_mvalue1
6. p_value2

o The values of each parameter are:

1. p_fset - p_fset is always set to 0, like p_fset=0

2. p_fieldName - p_fieldName is the Data Dictionary name, such as
p_fieldName=DATE_CREATED, p_fieldName=TIMESTAMP, and p_fieldName=PRIORITY

3. p_operator - p_operator is one of the following values but depends on the display
type of the field, the same as in the desktop user interface

 =
 >
 <
 <>
 <=
 >=
 contains
 not_empty
 empty
 between

4. p_value1_EVDISPLAY - for POPUP, DATE and DAY display type fields, you need to
specify this value

 For DATE and DAY fields, an example is p_value1_EVDISPLAY=09/08/2017

 For POPUP fields an example is p_value1_EVDISPLAY=P 2

 Note: you need to have the parameter api_reverse_lookup=YES to enable the
reverse lookup of list fields using their title rather than their name or the database
UDF_LIST_ID.

5. p_mvalue1 - All display types, except POPUP need to specify the database values

 For DATE and DAY fields, you need to specify the same value of
p_value1_EVDISPLAY, for example p_mvalue1=09/08/2017

 For POPUP fields, you don't need to specify any parameter if
api_reverse_lookup=YES

 For other display types, you need to specify the database values

6. p_value2 - p_value2 is only used for DATE and DAY fields when you using the
between operator, for example p_value2=09/30/2017

• The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password
being sent in clear text over your network connection

• Not all report types are supported by this command. The supported report types are Column,
Summary, Matrix and Aging. The remaining report types generate graphical information which
is not suitable for alphanumeric output

• If the report you are running uses the advanced report filters, then this automatically implies that
the report will also use expanded report filters

• This API command uses the filters specified in the report. Any runtime filters you have within
the report can be replaced with filters specified within the command. Note that if you wish to
run a report with runtime filters and want to use advanced search features such as numeric and
date operators, you should use the search API command. The search API command has more
flexibility in this case

• If the data returned includes an image, the data for the image will be base 64 encoded. However,
the optional parameter exclude_data_images will inhibit images embedded within HTML Area
fields from being output, if set to a value of yes

• If you are using this API function from within ExtraView, for example from within an email
template, it is the best practice not to hard code the site URL. In this scenario, you should use
the token $$SITE_URL$$ as a substitute for the address. The value of SITE_URL is determined
by ExtraView when the server starts. If the behavior setting named SITE_URL holds a value,
this is used.

search
This API call allows you to search the ExtraView database and to return a set of records that match the
search criteria. This function is equivalent to the search capability within the browser version of
ExtraView. It is extremely powerful as multiple search filters can be set on different fields. For example,
it is straightforward to set up a search that responds to a query such as “tell me all the open issues
against a specific module within a specific product that contain a specific keyword.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=search
&page_length=100
&record_start=1
&record_count=10
[&p_template_file=file.html]
&persist_handle=xxx
[&access_token=token-value]
[&username_display=ID | LAST | FIRST]
&status=OPEN &module_id=WIDGET
&product_name=MY_PRODUCT
&keyword=wireless%20PDA
[&report_id=nnn]
. . .

For example, a return from a valid search may be as shown in the following XML:

<?xml version="1.0"?>
<EXTRAVIEW_RESULTS>

<PROBLEM_RECORD>
<ID TITLE="Bug #">12266</ID>
<SHORT_DESCR TITLE="Title"><![CDATA[Here is the title]]></SHORT_DESCR>
<SEVERITY_LEVEL TITLE="Severity">02</SEVERITY_LEVEL>
<PRIORITY TITLE="Priority">2</PRIORITY>
<PRODUCT_NAME TITLE="Product">NetOp</PRODUCT_NAME>
<DATE_CREATED TITLE="Created">19-APR-01</DATE_CREATED>
<OWNER TITLE="Owner">DIAMONDK</OWNER>
<TIMESTAMP TITLE="Last Modified">21-JUN-01</TIMESTAMP>
<ASSIGNED_TO TITLE="Assigned To">CARL.KOPPEL</ASSIGNED_TO>
<PRIVACY TITLE="View">Private</PRIVACY>
<CATEGORY TITLE="Category">Software</CATEGORY>
<RESOLUTION TITLE="Disposition"></RESOLUTION>
<DATE_CLOSED TITLE="Date Closed"></DATE_CLOSED>
<ORIGINATOR TITLE="Originator">ROBBIE.LLOYD</ORIGINATOR>
<ORIGINATOR_NAME TITLE="Originator">Rob Lloyd</ORIGINATOR_NAME>
<MODULE_RECORD>
<MODULE_NAME TITLE="Module">Server</MODULE_NAME>
</MODULE_RECORD>
<RELEASE_RECORD>
<RELEASE_FOUND TITLE="Version Open">1.0.1.16</RELEASE_FOUND>
<RELEASE_FIXED TITLE="Version Closed"></RELEASE_FIXED>
<RELEASE_STATUS TITLE="Release Status">Open</RELEASE_STATUS>
</RELEASE_RECORD>
</PROBLEM_RECORD>
<PROBLEM_RECORD>
<ID TITLE="Bug #">12118</ID>
<SHORT_DESCR TITLE="Title"><![CDATA[Another problem]]></SHORT_DESCR>
<SEVERITY_LEVEL TITLE="Severity">01 sev</SEVERITY_LEVEL>
<PRIORITY TITLE="Priority">1</PRIORITY>
<PRODUCT_NAME TITLE="Product">NetOp</PRODUCT_NAME>
<DATE_CREATED TITLE="Created">14-FEB-01</DATE_CREATED>
<OWNER TITLE="Owner">CARL.KOPPEL</OWNER>
<TIMESTAMP TITLE="Last Modified">21-APR-01</TIMESTAMP>
<ASSIGNED_TO TITLE="Assigned To">CARL.KOPPEL</ASSIGNED_TO>
<PRIVACY TITLE="View">Private</PRIVACY>
<CATEGORY TITLE="Category">Software</CATEGORY>
<RESOLUTION TITLE="Disposition"></RESOLUTION>
<DATE_CLOSED TITLE="Date Closed"></DATE_CLOSED>
<ORIGINATOR TITLE="Originator">CARL.KOPPEL</ORIGINATOR>
<ORIGINATOR_NAME TITLE="Originator">Carl Koppel</ORIGINATOR_NAME>
<MODULE_RECORD> <MODULE_ID TITLE="Module">Client</MODULE_NAME>
</MODULE_RECORD>
<RELEASE_RECORD>
<RELEASE_FOUND TITLE="Version Open">Framework 1.1</RELEASE_FOUND>
<RELEASE_FIXED TITLE="Version Closed"></RELEASE_FIXED>

<RELEASE_STATUS TITLE="Release Status">Closed</RELEASE_STATUS>
</RELEASE_RECORD>
</PROBLEM_RECORD>
</EXTRAVIEW_RESULTS>

Note that if you do not have permission to view any of these fields, they will not appear in the output
from the action.

This action purposely returns only a small number of fields from the database. If you require additional
fields, you can parse the ID out of the returned information and then use the get action to read the
remaining fields within the database.

You should be careful in your use of this action as it can conceivably return extremely large result sets
to you.

NOTES

• The fields returned in the results correspond to the fields on the detailed report layout of the
user’s current business area, current project and current role. However, if the behavior setting
named REPORT_DTL_ITEM_DATA_LAYOUT is set to YES, then the detailed report for the
user’s current role and the issue’s business area and project are used to define the fields being
returned

• The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password
being sent in clear text over your network connection

• All searches within text type fields are processed using a contains operator, not an equals
operator. For example &short_descr=problem returns all records where the short_descr
field contains the word problem, not just those where the short_descr equals a value of
problem

• The keywords parameter is not a database field, but can be used to provide an unlimited number
of keywords as search filters in a space-delimited list to ExtraView. Note that you must “escape”
characters such as spaces in this list

• If you want to search for text contained within a text field, you can use a wildcard convention
using asterisks (*) as the wildcards

• You can search using an inequality filter as a parameter. For example, &release!=1.2 used as a
parameter will work

• You can search looking for null values in the results with a filter similar to &release={null} will
search for all records with a null value in the field release

• The parameter named p_page_length is required and gives the ExtraView API the maximum
number of records to return with one call. In conjunction with the parameter named
p_record_start, you can build script functions to retrieve paginated results, if you believe your
searches can bring up large number of records

• The parameter named p_record_start is required and gives ExtraView the number of the first
record in the search results to display. In conjunction with the parameter named p_page_length,

you can build script functions to retrieve paginated results, if you believe your searches can bring
up large number of records

• You need to supply the parameter named p_record_count whenever p_record_start is greater
than p_page_length

• The parameter named p_template_file is optional. If it is not provided, ExtraView returns the
results of the query in XML format. If it is provided, its value is the name of a server-side file
that contains a template to format the results of the query. Using this template provides a means
of formatting the output from the search command to a style of your own choosing. Most
commonly, this is used to provide a style of output consistent with that of the remainder of your
own company’s web site. An example of the source to a template file is shown below.

<TABLE cellpadding="2" cellspacing="2" border="1" bordercolor="#FFCCCC">
<TR bgcolor="#CCCCFF">
<TD align=right width=80>Defect #
</TD>
<TD width=800>__TAG_ID__</TD>
</TR>
<TR>
<TD align=right>Title</TD>
</TR>
<TR>
<TD>__TAG_SHORT_DESCR__</TD>
</TR>
<TR>
<TD align=right>Product</TD>
</TR>
<TR>
<TD>__TAG_PRODUCT_NAME__</TD>
</TR>
<TR>
<TD align=right>Description</TD>
</TR>
<TR>
<!-- __DESCRIPTION__ -->
</TR>
<TR>
__TAG_DESCRIPTION_TEXT__
</TR>
<TR>
<TD align=right>Comments</TD>
</TR>
<TR>
__TAG_COMMENTS_USER__: __TAG_COMMENTS_TIMESTAMP__
</TR>
<TR>

<!-- __COMMENTS__ -->
</TR>
<TR>
__TAG_COMMENTS_TEXT__
</TR>
</TABLE>

• The optional parameter username_display may be used to override the behavior setting named
USERNAME_DISPLAY, for the duration of the execution of a single API call. This allows the
developer to return the user names in a different format than the system-wide default

• If no records are returned by the search, the message "No records found." will be displayed
• You must provide at least one name and value for the search criteria. If you do not do this, you

will see the message "No parameters entered"
• Many of the fields within the ExtraView database, such as product_name, status, priority,

severity_level, assigned_to, category, etc., must be given valid values that already exist within
the metadata of your installation. If you attempt to enter a value that is not known to ExtraView,
an error message will result

• The optional parameter named persist_handle may be used to paginate the result set by spreading
the results returned over several separate calls using this API command. The persist_handle
identifies the result set, qualified by the user_id, that is used to maintain the result set
information across multiple API calls. The rules for using persist_handle are as follows:

o A new result set is generated whenever record_start=1; an existing result set is used
whenever record_start > 1

o The same persist_handle value can only be used for subsequent pages of the result set on
the same node; in clustered environments, if a subsequent call is directed to another node,
the result set will not be found and results will not be returned

o The maximum number of pages returned is 10. This means that the page_length must be
greater than 1/10th the size of the result set (# of rows returned) or the results will be
truncated with no error indication.

• The optional parameter report_id will use the layout associated with a report with the ID to
format the results. Note that the filters specified within the report are not used, but the filters
used in the search URL are used instead

• The format of date filter parameters, as used in runtime filters in a report is as follows:

<date> || <date> - <date> || -<date> || <date>-

The latter three are date ranges; rangestart to rangestop, rangestop, and rangestart respectively.

Where <date> is:

<unquoted date> || <sq><unquoted date><sq> || <dq><unquoted date><dq>

where <dq> ::= " (a double quote)
and <sq> := ' (a single quote)

A date may contain a dash if it appears in quotes. Otherwise, a dash is not permitted except as a
date range signifier.

search_field_list
This command provides a list of fields that may be used as query filters for the current user.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=search_field_list
[&access_token=token-value]

NOTES

The delimiter used the results is the value of the DEFAULT_TEXT_REPORT_DELIMITER in the
ExtraView application defaults. This command takes into account all security permissions for the user.
The general form of each entry returned by the command is:

<prefix><fieldName><delimiter><fieldTitle><delimiter><parentName>

• The parentName is blank or the immediate parent in an allowed-value or database-type
relationship

• The delimiter is that specified in in the behavior setting named
DEFAULT_TEXT_REPORT_DELIMITER

• The characters in the prefix have the following meanings:
~ means the field is part of a repeating row layout
* means the field has a display type of textarea or logarea
% means the field has a display type of user

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

An example of the return from this command is:

TIMESTAMP:Last Modified

EMAIL_SWITCH:Generate Email

%CHANGED_BY:Changed By

KEYWORD:Keywords

PRODUCT_NAME:Product

*SUGGESTIONS:Engineering Remarks

RELEASE_FOUND:Release

SHORT_DESCR:Title

SEVERITY_LEVEL:Severity

PRIORITY:Priority

STATUS:Status

ID:Defect #

DATE_CREATED:Created

%OWNER:Owner

CATEGORY:Category

RESOLUTION:Resolution

%LAST_CHANGE_USER:Changed by

DAYS_IN_STATUS:Days in Status

DAYS_OPEN:Days Open

MONTHS_OPEN:Months Open

%ASSIGNED_TO:Assigned To

%ORIGINATOR:Originator

PRIVACY:View

RELEASE_FIXED:Release Fixed

MONTHS_IN_STATUS:Months In Status

START_UPDATE:Updated Start Date

WEEKS_IN_STATUS:Weeks In Status

WEEKS_OPEN:Weeks Open

BUILD_FOUND_IN:Build Found In

BUILD_FIXED_IN:Build Fixed In

set_area_proj
This command sets the working area and project for the current user.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=set_area_proj
&area_id=nnn1
&proj_id=nnn2
[&access_token=token-value]

NOTES

Both the area_id and the project_id must exist, else the command will fail.

The proj_id must be valid within the area_id, else the command will fail.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

set_role
This action sets the user role of the current user.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=set_role
&user_group=role_id
[&access_token=token_value]

NOTES

The role_id specified, must exist, else the command will fail.

You can get a list of the valid roles with the command get_roles.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

update
This command allows you to update an existing record within ExtraView’s database. Only values that
are being altered need be supplied within the API call. Fields whose values are to remain the same need
not be supplied as parameters. All defined business rules using the preupdate and the postupdate
directives are executed and checked before and after the record is updated. The fields used with this
command are typically those that are placed on the EDIT_PROBLEM layout for the business area and
project specified in the syntax of the command.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=update
&p_template_file=file.html
&id=nnnnn
[&strict=no | yes]
[&access_token=token-value]
&field1=value1 [&field2=value2] [fieldn=valuen]

There is one additional name and value pair that can be provided, that is not a field within
ExtraView. This is &send_email=no. If you supply this name and value pair, then the update will
override the set default with which ExtraView will generate email upon the update of an
existing issue.

If the issue is updated without error, the function will return the issue number as shown below. Note that
the term "Bug #" is dependent on the screen title used for the ID field in the data dictionary.

Bug # 12352 updated.

NOTES

You must provide a valid name and value pair for the ID field. The value must be an existing issue ID
within the ExtraView database. If you do not provide this, an error message is generated.

The optional parameter strict, with a value of yes, enforces the action to operate only on ALT_ID. If
there is no match for the value of the ALT_ID in the specified ID parameter, then the message Invalid Id
will be returned. This means that a matching ID value will be ignored.

Many of the fields within the ExtraView database, such as product_name, status, priority, severity_level,
assigned_to, category, etc., must be given valid values that already exist within the metadata of your
installation. If you attempt to enter a value that is not known to ExtraView, an error message will result.

If you attempt to contravene a business rule, an error message will result. For example, if your
installation only allows issues to be FIXED if they are in an OPEN state and you provide a value of
CLOSED, an error message will result.

All field permissions are obeyed with the command, and if you attempt to update a field that does not
have write permission, then the whole command will fail.

The Role of PROBLEM_RELEASE_ID in the update Command

Usually, when one or more specific repeating rows must be affected (modified or deleted) through the
update command, the PROBLEM_RELEASE_ID parameter is used to identify specific rows. More than
one instance of PROBLEM_RELEASE_ID may be specified. In this case, each field=value parameter
corresponds to the PROBLEM_RELEASE_ID which shares the same position in the parameter list for
the same field name.

Thus, for example,

...&problem_release_id=111&problem_release_id=222&rr_field=abc&rr_field=def

maps the

rr_field=abc to problem_release_id 111 and rr_field=def to problem_release_id 222.

When no PROBLEM_RELEASE_ID in the parameter list maps to a specific rr_field=value, then a new
repeating row is added to accommodate the new value.

Multiple Repeating Row Types

ExtraView supports repeating rows of multiple types. Each type denotes a grouping of fields based on a
layout with that item group type. All repeating row types can be updated via the API. There are two
ways of specifying a repeating row type:

• Specific PROBLEM_RELEASE_IDxxx values, where xxx is the item group type, e.g.,
PROBLEM_RELEASE_ID3

• Generic PROBLEM_RELEASE_ID values.

Note1: Specific and generic PROBLEM_RELEASE_ID’s may not be combined in a single API call.

Note2: Each API Update operation using generic PROBLEM_RELEASE_ID values can support only
one repeating row type. Attempts to mix two or more repeating row types in a single API operation with
generic PROBLEM_RELEASE_ID’s will return with an exception.

The edit screen layout, along with the repeating row layouts applicable to the update request, define
which fields belong to which item group type, and therefore, which PROBLEM_RELEASE_IDxxx’s
apply.

When generic PROBLEM_RELEASE_ID’s are used, all the specified fields must be grouped into the
same item group type (via the edit layout and the repeating row layouts) – this item group type is used to
qualify the PROBLEM_RELEASE_ID values.

Example of specific PROBLEM_RELEASE_ID Update

...&PROBLEM_RELEASE_ID3=111&PROBLEM_RELEASE_ID4=222&field1=val1&field2=val2

where field1 is in the repeating row layout of item group type 3 and field2 is in the repeating row layout
of item group type 4, both of which are embedded in the edit layout for the user’s curren business area,
project and role. Then two repeating rows are updated, one with field1=val1 and the other with
field2=val2, each in a different repeating row type.

Example of generic PROBLEM_RELEASE_ID Update

...&PROBLEM_RELEASE_ID=111&field1=val1

where field1 is in the repeating row layout of item group type 3 and repeating row 111 is in item group
type 3 results in the update of field1 in the specified row. Note that there is no item group type specified
in the PROBLEM_RELEASE_ID variable name.

Using update to Add Repeating Rows

To add new repeating rows, values for fields in the repeating rows are provided without a corresponding
PROBLEM_RELEASE_ID value. For each non-corresponding value of a field, a new repeating row is
inserted. Thus, specifying &rr_field_a=1&rr_field_a=2&rr_field_a=3 with no specification of
PROBLEM_RELEASE_ID will result in three new repeating rows being added with these values,
assuming rr_field_a is a field in the repeating row. To update a repeating row value, you must provide
the PROBLEM_RELEASE_ID value of the row in question.

Using update to Delete Repeating Rows

Within the ExtraView GUI, users check a box named PROBLEM_RELEASE_DELETE in order to
delete a repeating row. The API can emulate this behavior, by setting PROBLEM_RELEASE_DELETE
to the checked for value for any repeating row you wish to delete.

For example, use a call similar to the following to delete a repeating row:

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=update
&id=nnnnn
&problem_release_id=xxxxx
&problem_release_delete=checked

Updating Document & Image type fields

These fields require additional metadata in the form of a description and the file to upload's character
set. You will have created an HTML form for the upload. An HTML snippet that shows how to make
this work is as follows:

Image Description: <input type="text" name="image_desc" value="image_dd_name desc"
/>

<input type="hidden" name="image_dd_name_charset" value="UTF-8" />
File to upload: <input type="file" name="image_dd_name" />

This form assumes an image field that has a data dictionary name of image_dd_name. Note the optional
charset and desc. The charset is not required for image fields, but for documents it can be useful. The
default, if charset is not given is UTF-8.

update_user_password
This action allows the user to update the password of an existing user within ExtraView.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=update_user_password
&p_template_file=file.html
&security_user_id=user_name
&old_password=old_password
&new_password=new_password
[&access_token=token-value]

NOTES

You must provide the ID of an existing user in the security_user_id parameter.

You must provide both the old password and the new password. These will be checked internally within
ExtraView to ensure they conform to any rule that may be in place.

You must have update permission to the security key named SE_SECURITY_USER before you can
execute the command.

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

user_field_list
This action allows the user to retrieve all the fields that are part of the user record. It is typically used to
generate a list of fields for which to provide values when creating a new user.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=user_field_list
&security_user_id=user_name
[&access_token=token-value]

NOTES

You must have query permission to the security key named SE_SECURITY_USER before you can
execute the command. The list returned will show a plus character (+) if the field is required. A typical
output from the command is shown below.

+SECURITY_USER_ID|Security User Id

+SECURITY_PASSWORD|Security Password

+FIRST_NAME|First Name

+LAST_NAME|Last Name

JOB_TITLE|Job Title

COMPANY_NAME|Company

ADDRESS_LINE1|Address Line1

ADDRESS_LINE2|Address Line2

CITY|City STATE|State

POSTAL_CODE|Postal Code

COUNTRY|Country

+EMAIL|E-Mail Address

WORK_TELEPHONE|Work Telephone

HOME_TELEPHONE|Home Telephone

CELL_PHONE|Cell Phone

FAX|Fax

PAGER|Pager

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

user_group_list
This action allows the user to retrieve a list of all the user groups within the system. It is typically used
to generate a list that validates adding a user to a user group.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=user_group_list
&security_user_id=user_name
[&access_token=token-value]

NOTES

You must have query permission to the security key named SE_SECURITY_GROUP before you can
execute the command. A typical output from the command is shown below.

ADMIN:Administrator

CUSTOMER:Customer

HW_ENG:HW Engineering

QA:Quality Aassurance

SW_ENG:SW Engineering

SUPPORT:Support

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

version
This action returns the build information of your ExtraView database.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=version
[&access_token=token-value]

NOTES

The information returned is a serial number of the last updates applied to the ExtraView database. A
typical output from the command is shown below.

$Revision: 22 $
$Modtime: 6/23/06 10:37p $

The optional access_token parameter allows you to use a valid OAuth2 token obtained with
the get_token command. If you provide the access_token parameter, then
the user_id and password parameters should not be provided. This prevents the password being sent
in clear text over your network connection.

	Application Programming Interface
	Downloadable PDF
	Related API Guides

	Concepts
	API command summary
	Authentication
	Requests Passed to the API
	XML Data Returned From API Calls
	Server-side Templates
	Repeating Row Records and the API
	Updating and Inserting Fields in Repeating Row Data
	Updating Repeating Rows
	Inserting Repeating Rows
	Repeating Row Example
	Retrieving an Issue
	Updating an Issue
	Inserting an Issue

	Server-Side Templates
	Stand-alone templates, used to format the results
	Desired Output
	Sample Template Code

	Structured Formatting of Results
	Overall Desired Output
	Sample Template Code

	The fill_in Template
	Syntax
	Sample Template File
	Browser Output

	The error.html Template
	Sample Template File
	Browser Output

	Executing ExtraView Functions
	Common Parameters
	Adding an Issue
	Syntax
	Notes

	Editing an Issue
	Syntax
	Notes

	The Email Drilldown Link
	Syntax
	Notes

	Running a Detailed Report
	Syntax

	Running a Quicklist
	Syntax

	Running Saved Reports
	Column Reports
	Matrix Reports
	Summary Reports
	Aging Reports
	Calendar Reports
	Planning Reports
	Charts
	Taskboard Reports
	Dashboard Reports

	Pop-up List of User Details

	Static Web Page Access
	HTML Pages that access ExtraView remotely
	Server-side HTML Templates

	Automatic Language Translation
	add_attachment
	SYNTAX
	Adding an attachment from an HTML page
	attach_results.html template file
	NOTES

	add_field_list
	SYNTAX
	NOTES

	add_udf_list
	SYNTAX
	EXAMPLE
	NOTES

	add_user_to_group
	SYNTAX
	NOTES

	allowed_list
	SYNTAX
	NOTES
	EXAMPLE

	custom
	SYNTAX
	NOTES

	debug
	SYNTAX
	NOTES

	delete
	SYNTAX
	NOTES

	delete_attachment
	SYNTAX
	NOTES

	delete_user
	SYNTAX
	NOTES

	edit_field_list
	SYNTAX
	NOTES

	fields
	SYNTAX
	NOTES

	get
	SYNTAX
	NOTES

	get_areas
	SYNTAX
	NOTES

	get_attachment
	SYNTAX
	NOTES

	get_behavior_setting
	SYNTAX
	NOTES

	get_field_defaults
	SYNTAX
	NOTES

	get_fields
	SYNTAX
	NOTES

	get_heartbeat
	SYNTAX
	NOTES

	get_list_projects
	SYNTAX
	NOTES

	get_log
	SYNTAX
	NOTES

	get_projects
	SYNTAX
	NOTES

	get_reports
	SYNTAX
	NOTES

	get_roles
	SYNTAX
	NOTES

	get_title
	SYNTAX
	NOTES

	get_token
	SYNTAX
	NOTES
	EXAMPLES

	get_user_field_list
	SYNTAX
	NOTES

	get_user_info
	SYNTAX
	NOTES

	get_users
	SYNTAX
	NOTES

	get_valid_meta_data
	SYNTAX
	NOTES

	history
	SYNTAX
	NOTES

	import_allowed_values
	SYNTAX
	NOTES
	EXAMPLE

	insert
	SYNTAX
	NOTES
	Inserting Document & Image type fields

	insert_user
	SYNTAX
	NOTES

	insert_xml
	SYNTAX
	NOTES

	item_exists
	SYNTAX
	NOTES

	list_attachment
	SYNTAX
	NOTES

	run_report
	SYNTAX
	NOTES

	search
	SYNTAX
	NOTES

	search_field_list
	SYNTAX
	NOTES

	set_area_proj
	SYNTAX
	NOTES

	set_role
	SYNTAX
	NOTES

	update
	SYNTAX
	NOTES
	The Role of PROBLEM_RELEASE_ID in the update Command
	Multiple Repeating Row Types
	Example of specific PROBLEM_RELEASE_ID Update
	Example of generic PROBLEM_RELEASE_ID Update
	Using update to Add Repeating Rows
	Using update to Delete Repeating Rows
	Updating Document & Image type fields

	update_user_password
	SYNTAX
	NOTES

	user_field_list
	SYNTAX
	NOTES

	user_group_list
	SYNTAX
	NOTES

	version
	SYNTAX
	NOTES

