
This documentation covers the functionality of the ExtraView Programming Interface (CLI). This is a
REpresentational State Transfer (RESTful) API This document is intended for the experienced computer
user who has a good understanding of either the UNIX, Linux, or Microsoft Windows environments from
which they will use the Application Programming Interface (API). To take maximum advantage of the
features offered by the API, knowledge of web-based technologies are helpful. If you intend to modify the
behavior of ExtraView with user custom programming, you will need to be skilled in coding with the Java
language. In addition, ExtraView administration skills are required to configure many of the functions
offered.

Downloadable PDF

The Application Programming Interface Guide is downloadable as a single PDF by clicking here. You will
need the Adobe Acrobat Reader to view this.

Related API Guides

CLI - Command Line Interface
Web Services Interface

The key features of the RESTful API are:

Insert, update and delete records in the ExtraView database from remote applications
Search the ExtraView database and return a set of records defined in a query
Export information from the ExtraView database for input to a data warehouse
Upload and download file attachments to and from the ExtraView database
Provide limited administration access to create metadata and to manage user accounts
Show the names of fields within the ExtraView database to which the user has access

The REstful API is a set of programmable HTTP calls. These calls operate on the ExtraView application to
return data and metadata to the calling program or to update items within the ExtraView database.

API command summary

ADD_ATTACHMENT uploads a file attachment to the ExtraView database

ADD_FIELD_LIST provides an ordered list of fields that are used to insert records

ADD_USER_TO_GROUP adds an existing user to a user group

ALLOWED_LIST gives the list of allowed values for a key

CUSTOM invokes a call within the CLI user exit in the UserCustom java class

DEBUG alters the debug level of messages sent to the application server log

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

1 of 76 4/1/2016 11:10 AM

DELETE deletes existing issue(s) from the database

DELETE_USER deletes an existing user

EDIT_FIELD_LIST provides an ordered list of fields that are used for update

FIELDS displays a list of available fields and their screen names

FILL_IN uses a template and fills in the values with the parameters provided

GET retrieves a single record from the database

GET_APP_DEFAULT retrieve an ExtraView behavior setting (deprecated)

GET_AREAS retrieves a list of the areas in use from the database

GET_ATTACHMENT downloads a copy of a file from an issue attachment

GET_BEHAVIOR_SETTING
retrieve an ExtraView behavior setting (supercedes
GET_APP_DEFAULT)

GET_FIELDS download a specific field or fields from an existing issue

GET_HEARTBEAT return a status indicator to show that ExtraView is alive

GET_LOG returns the contents of the application server log

GET_PROJECTS retrieves a list of projects for a given area from the database

GET_REPORTS retrieves a list of the reports currently available to the user

GET_ROLES retrieves the available roles for a specified user from the database

GET_TITLE retrieve data dictionary information on a field

GET_USERS retrieve a list of user names from the database

GET_VALID_META_DATA retrieve the metadata for an issue

HISTORY retrieve all records from a specified point in time

IMPORT_ALLOWED_VALUES import allowed values from a file into ExtraView

INSERT inserts new records into the ExtraView database

INSERT_USER create a new user account

INSERT_XML inserts a new record into ExtraView from XML formatted input data

ITEM_EXISTS checks whether an issue exists in the database

LIST_ATTACHMENT retrieves a list of file attachments against a single issue

RUN_REPORT runs a report that has been defined within ExtraView

SEARCH provides a general search and retrieval mechanism

SEARCH_FIELD_LIST provides a list of fields that can be searched for

SET_AREA_PROJ sets the working area and project

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

2 of 76 4/1/2016 11:10 AM

SET_ROLE sets the working role of the user

UPDATE updates existing records in the ExtraView database

UPDATE_USER_PASSWORD updates a user’s password

USER_FIELD_LIST displays an ordered list of fields for the user record

USER_GROUP_LIST displays a list of user roles ordered by the user role title

VERSION returns the version number and build number of ExtraView

Authentication

All API commands require an active ExtraView username and password unless anonymous access is
enabled with the behavior setting named ALLOW_ANONYMOUS_API_ACCESS. It is sometimes useful
to allow anonymous access to ExtraView. Most commonly, this is used to provide a web page that you have
designed to perform transactions, or to query the ExtraView database, not to need a hard-coded username
and password. To preserve a secure environment, it is necessary to perform the following steps to set up
anonymous access:

Within the ExtraView administration section, under the Systems Control tab and within the API
Settings section, set the behavior setting named ALLOW_ANONYMOUS_API_ACCESS to have a
value of YES

1.

In the same section, set the application default named ANONYMOUS_API_USER_ID to the user ID
that you will use for the anonymous access

2.

All entries made in an anonymous fashion will use this user ID to log their activities3.
Ensure that you only give security privileges to the user group to which this user ID belongs that is in
keeping with the fact that this user is used to log all activities. Normally this means that this user
group will have limited access to fields, especially in write and query modes

4.

It is recommended that when you allow users to enter issues in an anonymous fashion, that you have
ExtraView fields that capture their names and other contact details

5.

Once you have set up anonymous access, the parameters named user_id and password in all API commands
become optional. If they are provided, they must be valid combinations of user names and passwords.

Requests Passed to the API

To create an API call, the user creates an HTTP request (HTTPRequest object) and submits this to the
server. This request can be composed within virtually any computer language. Each HTTP request is
composed of the following parts:

The server domain name, including the path to the servlet where ExtraView is running. For example,
http://www.myserver.com/evj/ExtraView
The class and method which accesses the API. Usually this is ev_api.action
The user_id and password for the user, passed as name / value pairs
The statevar, passed as a name / value pair. This parameter defines the specific API call being made
A list of name / value pairs providing the parameters and their values for the API call, and which are
necessary or optional to execute the API call. Note that the user is responsible to provide a correct
list of parameters for each call. If the API does not recognize a parameter, then it is ignored and no
warning is given to the user.

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

3 of 76 4/1/2016 11:10 AM

If you are creating your own HTTPRequest object from a programming environment to call the ExtraView
API, then you must also set the standard parts of the HTTPRequest object, such as the USER_AGENT.
There will most probably be standard libraries for your environment to assist in doing this.

XML Data Returned From API Calls

Much of the data returned by an API call is in XML format. This has some significance to the user of the
API, in that Extraview's XML data may embed your own XML within its results. To accommodate this,
ExtraView uses Base64 encoding whenever it sees XML data returned from the application to ensure that
the XML returned by API commands through the API must be well-formed. This means that the contents of
a CDATA string must not contain the character string "]]>", because that is the end sentinel for a CDATA
section. So, if the original data contains this string, there must be some way to escape the data. For easy
recognition of an escaped CDATA string, ExtraView prepend the characters %25S to the front of the string.
These characters are merely a sentinel and are not part of the output string. The encoding used for the rest
of the CDATA string is called Base64, and algorithms for encoding/decoding are widely available.
Furthermore, ExtraView ensures that the %25S sentinel string does not appear in the CDATA raw character
string by encoding any CDATA raw character string to Base64 as well. It is the responsibility of the
receiver, therefore, to test each CDATA section for the sentinel characters %25S at the beginning of the
CDATA, and, if present, perform the Base64 decode function on the remainder of the character data to get
the raw character values in the field.

Server-side Templates

Server-side templates can be defined for many API commands. These templates allow you to control the
presentation of the output from the API command. Most commonly this is used to allow the administrator to
integrate ExtraView with their company’s own web site. For example, a page within your company’s web
site can perform a search of the ExtraView database and return the results formatted with the same look
and feel as the web site.

Templates allow you to use “tags” that are substituted at runtime, with the actual value in a record. For
example, the tag __STATUS__ refers to the value of the STATUS field of the current record. Tags are
available for most fields in the data dictionary. In addition, if you place a data dictionary field on a template,
it must exist on the Detailed Report layout inherited by the specific Business Area and Project. The user
must also have read permission to the field.

See this page for full details of server-side templates.

Repeating Row Records and the API

Output from ExtraView using repeating rows can be turned off, to simplify the XML returned from a
command. To use repeating rows within the API, you must set the behavior setting named
MULTI_RELEASE_XML to a value of YES within the administration section.

The following API commands support repeating rows:

GET
GET_FIELDS
HISTORY
INSERT – note that you can only insert a single repeating row when inserting an issue, but you can
then update that issue with additional repeating rows
RUN_REPORT

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

4 of 76 4/1/2016 11:10 AM

UPDATE – note that you can only update a single repeating row with a single update command.

The commands that return XML will do so as shown in the following example:

<REPEATING_ROWS TITLE='Repeating Rows' REPEATING_ROWS='1'>
 <REPEATING_ROW REPEATING_ROW_ID='1073779532'>
 <FRED_RR TITLE='Repeating row fred'>
 <![CDATA[a new fredrr]]>
 </FRED_RR>
 <RELEASE_CHILD_STATUS TITLE='Branch Status'>
 <![CDATA[Assigned]]>
 </RELEASE_CHILD_STATUS>
 <RELEASE_REQUESTED_RELEASE TITLE='Requested Release'>
 <![CDATA[4.0.3.14]]>
 </RELEASE_REQUESTED_RELEASE>
 <RELEASE_COMMITTED_RELEASE TITLE='Committed Release'>
 <![CDATA[4.0.3.14]]>
 </RELEASE_COMMITTED_RELEASE>
</REPEATING_ROW>
<REPEATING_ROW REPEATING_ROW_ID='1073779542'>
 <FRED_RR TITLE='Repeating row fred'>
 <![CDATA[a new fredrr2]]>
 </FRED_RR>
 <RELEASE_CHILD_STATUS TITLE='Branch Status'>
 <![CDATA[Assigned]]>
 </RELEASE_CHILD_STATUS>
 <RELEASE_REQUESTED_RELEASE TITLE='Requested Release'>
 <![CDATA[4.0.3.13]]>
 </RELEASE_REQUESTED_RELEASE>
 <RELEASE_COMMITTED_RELEASE TITLE='Committed Release'>
 <![CDATA[4.0.3.13]]>
 </RELEASE_COMMITTED_RELEASE>
</REPEATING_ROW>
<REPEATING_ROW REPEATING_ROW_ID='1073779552'>
 <FRED_RR TITLE='Repeating row fred'>
 <![CDATA[a new fredrr3]]>
 </FRED_RR>
 <RELEASE_CHILD_STATUS TITLE='Branch Status'>
 <![CDATA[Assigned]]>
 </RELEASE_CHILD_STATUS>
 <RELEASE_REQUESTED_RELEASE TITLE='Requested Release'>
 <![CDATA[4.2.2.7]]>
 </RELEASE_REQUESTED_RELEASE>
 <RELEASE_COMMITTED_RELEASE TITLE='Committed Release'>
 <![CDATA[4.2.2.8]]>
 </RELEASE_COMMITTED_RELEASE>
</REPEATING_ROW>
</REPEATING_ROWS>

The data structures here are:

Repeating Rows Element -- at most one per issue extracted:

<REPEATING_ROWS TITLE=’Repeating Rows’ REPEATING_ROWS='1'> ... (repeating row
elements) </REPEATING_ROWS>

1.

Repeating Row Elements – as many as there are repeating rows in the issue extracted:

<REPEATING_ROW REPEATING_ROW_ID='nnnnnnn'> ... (repeating row field elements)
</REPEATING_ROW>

2.

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

5 of 76 4/1/2016 11:10 AM

Repeating Row Field Elements – one for each field inside the repeating row:

<fieldTag TITLE='fieldTitle'> <![CDATA[fieldData]]> </fieldTag>

where – fieldTag = data dictionary field name fieldTitle = title of the field fieldData = data contained
in the field (in CDATA-encoded format)

3.

Updating and Inserting Fields in Repeating Row Data

Previous to release 4.2.2.8, the API did not handle repeating row records, therefore the previous format for
for update of fields within an issue is maintained for backward compatibility. An extension is made to allow
for the insertion or the update of one or more specific repeating row fields as follows.

Updating Repeating Rows

To update an existing repeating row field, there must be a parameter named PROBLEM_RELEASE_ID in
the update parameter set. This parameter may have multiple values, each one specifying a specific repeating
row ID (i.e. the ITEM_ID of the repeating row within the issue). The field values associated with these
repeating rows are specified in a parallel set of parameters, named for the field name within the repeating
row. Each such parameter may be given mutiple values, each of which maps to a repeating row as specified
by the multiple values of PROBLEM_RELEASE_ID.

As an example, assume that there are 5 repeating rows in issue #100, numbered 201, 202, 203, 204, and
205.

Then with PROBLEM_RELEASE_ID set to the values (202, 204), the value of FRED_RR, a repeating
row-resident field, might take on the values ("fred202", "fred204") in the input parameters.

Then, the repeating rows with the ID’s of 202 and 204 are updated with the value of FRED_RR being set to
"fred202" and "fred204" respectively. No other repeating rows would be affected by the update.

Inserting Repeating Rows

Inserting repeating rows is similar to updating repeating rows, except no PROBLEM_RELEASE_ID is
given as a parameter. When no PROBLEM_RELEASE_ID is present, ExtraView will insert the remaining
fields as a new repeating ROW.

You can insert multiple repeating rows with a single API call. For example, the following parameter string
will insert three repeating row records, each within a single field named FRED_RR:

&FRED_RR=val1&FRED_RR=val2&FRED_RR=val3

Repeating Row Example

First, make sure you have set the behavior setting named MULTI_RELEASE_XML to YES. The following
examples assume you have an ExtraView server located at http@//extraview.myserver.com/evj/ExtraView.

Retrieving an Issue

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

6 of 76 4/1/2016 11:10 AM

We will first retrieve issue number 26788 from ExtraView. This issue has existing repeating rows.

http@//extraview.myserver.com/evj/ExtraView/ev_api.action?user_id=myname&password=mypass&
statevar=get&id=26788

ExtraView returns XML data that includes a section about Repeating Rows. The XML is shown indented
here for clarity.

...
<REPEATING_ROWS TITLE="Repeating Rows" REPEATING_ROWS="1">
 <REPEATING_ROW REPEATING_ROW_ID="1073788412">
 <RELEASE_SOURCE_CODE_BRANCH TITLE="Code Branch">
 <![CDATA[4.3]]>
 </RELEASE_SOURCE_CODE_BRANCH>
 <RELEASE_CHILD_STATUS TITLE="Branch Status">
 <![CDATA[Assigned]]>
 </RELEASE_CHILD_STATUS>
 <RELEASE_REQUESTED_RELEASE TITLE="Requested Release">
 <![CDATA[4.3.1]]>
 </RELEASE_REQUESTED_RELEASE>
 <RELEASE_COMMITTED_RELEASE TITLE="Committed Release">
 <![CDATA[4.3.1]]>
 </RELEASE_COMMITTED_RELEASE>
 </REPEATING_ROW>
 <REPEATING_ROW REPEATING_ROW_ID="1073791532">
 <RELEASE_SOURCE_CODE_BRANCH TITLE="Code Branch">
 <![CDATA[4.4]]>
 </RELEASE_SOURCE_CODE_BRANCH>
 <RELEASE_CHILD_STATUS TITLE="Branch Status">
 <![CDATA[Open]]>
 </RELEASE_CHILD_STATUS>
 <RELEASE_REQUESTED_RELEASE TITLE="Requested Release">
 <![CDATA[4.4]]>
 </RELEASE_REQUESTED_RELEASE>
 <RELEASE_COMMITTED_RELEASE TITLE="Committed Release">
 <![CDATA[4.4]]>
 </RELEASE_COMMITTED_RELEASE>
 </REPEATING_ROW>
 </REPEATING_ROWS>
...

The important data you need is located at . This provides the unique identifier for the particular repeating
row of the issue.

Updating an Issue

To update the field named RELEASE_CHILD_STATUS field within the repeating record field just retrieved
from the example above:

http://extraview.myserver.com/evj/ExtraView/ev_api.action?user_id=myname&password=mypass&
statevar=update&id=26788&problem_release_id=1073788412&RELEASE_CHILD_STATUS=6936

Inserting an Issue

To insert a new issue, including one repeating row:

http://extraview.myserver.com/evj/ExtraView/ev_api.action?user_id=myname&password=mypass&
statevar=insert&area_id=4&project_id=8&category=SOFTWARE &short_descr=Testing&

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

7 of 76 4/1/2016 11:10 AM

product_name=EVJAVA&module_name=DATABASE&RELEASE_CHILD_STATUS=6936&
description=blah

The presence of the field named RELEASE_CHILD_STATUS, as the only field in the example that has
exists within a repeating row record, causes a new repeating row record to be created.

Server-side templates can be defined for many API and CLI commands. These templates allow you to
control the presentation of the output from the API command. Most commonly this is used to allow the
administrator to integrate ExtraView with their company’s own web site.

For example, a page within your company’s web site can perform a search of the ExtraView database and
return the results formatted with the same look and feel as the web site.

Templates allow you to use "tags" that are substituted at runtime, with the actual value in a record. For
example, the tag __STATUS__ refers to the value of the STATUS field of the current issue. Tags are
available for most fields in the data dictionary. In addition, if you place a data dictionary field on a template,
it must exist on the Detailed Report layout inherited by the specific Business Area and Project. The user
must also have read permission to the field.

TEXTAREA, LOGAREA and PRINTTEXT fields have special handling within ExtraView. This is because
they can be broken down into three components, the text itself, the user’s name who entered the text, and a
timestamp. Each of these components can be accessed individually, as shown in the following example.
Note that the field name itself must be included as a tag, although it does not display anything in the output.
Therefore, an HTML fragment that might display the DESCRIPTION field may look like:

<TD>
__DESCRIPTION__
__DESCRIPTION.USER__ : __DESCRIPTION.TIMESTAMP__

__DESCRIPTION.TEXT__

</TD>

The full explanation for each part of the field is as follows, where DDNAME is the data dictionary name of
the field of display type TEXTAREA, LOGAREA or PRINTTEXT.

Field name Explanation

__DDNAME__
A tag with the data dictionary name must be included in the template. No
output occurs with this tag. It is a placeholder that ensures the remaining
fields will be processed correctly

__DDNAME.TEXT__ This is used to return the body of text within the comments

__DDNAME.USER__ This is used to return the name of the user who entered the comment

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

8 of 76 4/1/2016 11:10 AM

__DDNAME.TIMESTAMP__
This is used to return the date (and time) that the comment was entered.
This will be returned in the current user’s date and time format that is
defined in their personal settings

Three special tags are not fields in the data dictionary:

Tag name Explanation

__RESULTS__

this tag returns the result string that is sent, upon execution of a call to the API.
For example, if you use an HTML form to insert a record into ExtraView, and
define a template that contains only the tag __RESULTS__, then the output
would be: Problem #12342 added.

__ERR_RESULTS__
this tag returns any error as a result of executing the API command. It is often
used in conjunction with an error handling template, as described below

__RECORD_COUNT__
this tag returns the number of records found from the API action named
search. You may use this field in the header or footer section of a template (see
below), but not in the body part of a template.

The API commands that work with templates are:

delete
fill_in
get
insert
insert_user
list_attachment
search
update
update_user_password

The templates must be stored in a directory in your environment, typically located within your installation
in a directory named user_templates. This directory is placed within your ExtraView installation, at the
same level as the templates directory that resides inside the WEB-INF directory. This location may vary
according to how you installed ExtraView. The ExtraView Administration screens have a feature that allows
you to upload files directly to this directory from your local computer. Templates are processed slightly
differently, according to whether they are intended to generate text or generate HTML. First, the
assumption is that if the template name has a suffix of .html or .htm, then it is assumed that it will generate
HTML code. With all other file suffixes, the assumption is that they contain text. If they are HTML
templates:

The api calls search and get will have escaping enabled
Fields that have display_as_url set as attribute in the data dictionary will be rendered as HTML
Blank or null values in fields will result in being rendered

The template you define can be in one of two forms:

Stand-alone templates, used to format the results

Desired Output

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

9 of 76 4/1/2016 11:10 AM

Sample Template Code

<html>
<head>
<title>ExtraView Insert Issue</title>
</head>
<body bgcolor="#FFFFFF">
<p align="center">Thank you for submitting your issue. It has been added to the tracking
database with the ID</p>
<p align="center"> __ID__ </p>
<p align="center">Please take note of this number and use this if you wish to inquire
about the status.</p>
</body>
</html>

Structured Formatting of Results

This is composed of a template structure that may have up to three sections, each of which resides in a
separate file. Each file name is defined by prefixing the template name with the letter h, b or f, according to
whether it is the header section, body section or the footer section. Each section is optional, although it
makes no real sense to not have the body section.

Overall Desired Output

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

10 of 76 4/1/2016 11:10 AM

Sample Template Code

The template code is split into three files representing the fixed header, the repeating body and the fixed
footer.

Header File - file name begins with "h"

<html>
<head>
<title>ExtraView Insert Issue</title>
</head>
<body bgcolor="#FFFFFF" leftmargin="0" topmargin="0">
<p></p>
<p>The results of your search found the following records </p>
<table width="100%" border="0" cellpadding="0">

Body File - file name begins with "b"

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

11 of 76 4/1/2016 11:10 AM

<tr bgcolor="#CCCCFF">
<td>Issue Number</td>
<td>Status</td>
<td>Assigned To</td>
</tr>
<tr>
<td>__ID__</td>
<td>__STATUS__</td>
<td>__ASSIGNED_TO__</td>
</tr>
<tr>
<td colspan="3">__SHORT_DESCR__</td>
</tr>
<tr>
<td colspan="3"> __REPEAT_START__ __Description__ __REPEAT_STOP__ </td>
</tr>

Footer File - file name begins with "f"

</TABLE>
<hr>
<p><i>MyCo</i> - Your one stop shop for integrated data services
 Powered by
ExtraView</p>
</body>
</html>

The fill_in Template

It is sometimes useful to be able to generate a template and populate it with values that do not originate in
ExtraView’s database. The fill_in action fulfills this need.

Syntax

http://www.myserver.com/evj/ExtraView/ev_api.action?user_id=username &password=password&
statevar=fill_in&p_template_file=this_template.html&id=12345 &any_name_at_all=Phyllis%20Mitchell ...
... ...

The template file, this_template.html, will be returned to the user’s screen, with the values for id and
any_name_at_all filled in.

Sample Template File

<html>
<head>
<title>ExtraView Entry Details</title>
</head>
<body>
<hr>
<p align=center>The ID for the problem is __ID__ and it was entered by

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

12 of 76 4/1/2016 11:10 AM

__ANY_NAME_AT_ALL__.</p>
<hr>
</body>
</html>

Browser Output

The error.html Template

If the code that executes in the API command that was submitted completes with an error or unexpected
condition, the template named error.html is invoked and used to display the error to the user. Within this
template, the tag __ERR_RESULTS__ is replaced with the actual error message from the command being
executed.

Sample Template File

<html>

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

13 of 76 4/1/2016 11:10 AM

<head>
<title>ExtraView Error!</title>
</head>
<body bgcolor="#cedece">
<hr>
<p align=center>__ERR_RESULTS__</p>
<hr>
</body>
</html>

Browser Output

From within an ExtraView screen, you may want to add a new issue or edit an existing issue. This is
typically driven by the “Display as URL” data dictionary function. This places a button on a form beside
the field described in the data dictionary when you are on the add or edit screens. The “Display as URL”
function can be used to open URL’s both external to ExtraView and internal to ExtraView.

The reasons for doing this are various and typically related to integrating ExtraView with other enterprise
applications.

It is possible to execute many different URLs within ExtraView with this technique, but some may have
unpredictable results, according to the context of the request you are making. This documentation does not
attempt to offer an exhaustive list of supported functions, but lists the most useful functions. Please contact
ExtraView support if your requirement goes beyond this list and you have problems getting the desired
functionality. All commands must be executed on a single line, but are shown with one parameter per line
for clarity.

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

14 of 76 4/1/2016 11:10 AM

Common Parameters

Some parameters are common to all commands. These are described as:

Parameter Purpose

p_action
This is the name of the Java class within ExtraView that is being called from the
command. This is a mandatory parameter

p_option
This is the name of the method within the Java class that is being called from the
command. This is a mandatory parameter

ev_menu
This may have the value of off or on. off is the default. This determines whether a
navigation bar will be placed on the window that is opened as a result of executing the
command, within the standard user interface

p_output_type
This may be one of HTML, PDF, or TEXT, depending on the output you require. The
default is HTML

p_close_win
This is typically used with the standard user interface when adding or updating issues.
After the add or update performed by the user, the browser window will be closed if this
parameter is present, with a value of false

In the following commands, part of the URL structure is evSignon. This ensures that the user must go
through the sign on process to reach the page or function. If the user is already signed on, then ExtraView
redirects the user directly to the page. If the user is not signed on, the user must provide their sign on
credentials, and then they are taken to the page.

ExtraView allows a user to open several separate sessions within their browser, if the browser supports the
ability to run concurrent sessions of the same application. In the case that several sessions are open within
the user's default browser and one of the following commands is issued, there is no certainty to which
browser session the command will be serviced. ExtraView has no control over which session the browser
chooses.

Syntax

http://www.myserver.com/evj/ExtraView/evSignon
?p_action=doAddDisplay
&p_option=Display
&p_close_win=true
&ev_menu=off
&p_ddname_1=value
... ...
&p_ddname_n=value

Notes

Use the name of your server installation in place of http://www.myserver.com/evj/ExtraView.

If the optional parameter p_close_win has a value of true, then the add window will be closed when the

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

15 of 76 4/1/2016 11:10 AM

issue is successfully updated by the user. If you set p_close_win to true, it is recommended that you also set
ev_menu to off.

The optional parameter ev_menu=off will suppress the navigation bar within the new window that is
opened to add the issue.

You may populate fields on the add screen that is generated, by using the convention p_ddname=value.
Note that you should escape text fields containing special characters. For example, to add the title field to a
new issue, you may use a parameter such as:

p_short_descr=This%20is%20the%20title%20of%20the%20issue

If the user is signed on when the command is issued, a new edit window will be opened immediately. If the
user is not signed on, then the user is first taken to the sign on screen where they must sign on, before being
allowed to edit the issue.

Syntax

http://www.myserver.com/evj/ExtraView/evSignon
?p_action=doEditDisplay
&p_option=Display
&p_id=nnnnn
&p_from_action=search
&p_from_option=search
&p_close_win=true
&ev_menu=off

Notes

Use the name of your server installation in place of http://www.myserver.com/evj/ExtraView

Replace nnnnn with the issue number you want to edit

If the optional parameter p_close_win has a value of true, then the edit window will be closed when the
issue is successfully updated by the user.

The optional parameter ev_menu=off will suppress the navigation bar within the new window that is
opened to edit the issue. If the user is signed on when the command is issued, a new edit window will be
opened immediately.

If the user is not signed on, then the user is first taken to the sign on screen where they must sign on, before
being allowed to edit the issue.

This is a special case of a drilldown used by ExtraView, providing the drilldown from within the body of an
email to ExtraView. It is provided here for completeness, as it can often be used for other purposes.

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

16 of 76 4/1/2016 11:10 AM

Syntax

http://www.myserver.com/evj/ExtraView/link.html
?p_action=doEditDisplayEmail
&p_option=Display
&p_id=nnnnn
&p_from_action=email
&p_from_option=email

Notes

Use the name of your server installation in place of http://www.myserver.com/evj/ExtraView.

Replace nnnnn with the issue number you want to edit.

If the user is signed on when the command is issued, a new edit window will be opened immediately. If the
user is not signed on, then the user is first taken to the sign on screen where they must sign on, before being
allowed to edit the issue. Prior to version 8.0, the syntax of this link was different. The old syntax still
works, but does not open an issue within the current workspace, and will only open an issue in a new
browser window. If you wish to use the old format, the syntax is:

http://www.myserver.com/evj/ExtraView/evSignon
?p_action=doEditDisplayEmail
&p_option=Display
&p_id=nnnnn
&p_from_action=email
&p_from_option=email
&p_close_win=true
&ev_menu=off

If the optional parameter p_close_win has a value of true, then the edit window will be closed when the
issue is successfully updated by the user. The optional parameter ev_menu=off will suppress the navigation
bar within the new window that is opened to edit the issue.

This function will allow you to send a URL to ExtraView, and immediately run a detailed report for an
issue. If you are not signed on as a user, ExtraView will take you first to the sign on screen to authenticate
your user details. You must know the id of the issue you want to display to be able to use this function.

Syntax

http://www.myserver.com/evj/ExtraView/evSignon
?p_option=search.SearchReportDetailDisplay
&p_action=doRunDetailed
&id=nnnnn

Syntax

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

17 of 76 4/1/2016 11:10 AM

This example will access ExtraView’s search class and produce a Quicklist report, using the values in the
display field named searchword, and the current values of the product_name and assigned_to fields as
filters for the query.

http://www.myserver.com/evj/ExtraView/
?p_action=doRunQuicklist
&p_option=search.SearchDisplay
&searchword=$$VALUE$$
&product_name=$$PRODUCT_NAME$$
&assigned_to=$$ASSIGNED_TO$$

These functions allow you to send a URL to ExtraView, and immediately run an existing saved report to
your browser. If you are not signed on as a user, ExtraView will take you first to the sign on screen to
authenticate your user details. You must know the report_id of the report you want to run to be able to use
this function.

If you do not know the ID of the report, this is easily found from the report editor for the report type. Edit
the report and place your mouse cursor over the box to the right of the report title. This shows the details of
the report, including its ID. Alternatively, you can execute the API command get_reports, to see the
report_id for all reports.

Column Reports

http://www.myserver.com/evj/ExtraView/evSignon
?p_option=search.SearchReportDisplay
&p_action=doRunReport
&p_output_type=HTML
&report_id=nn

Matrix Reports

http://www.myserver.com/evj/ExtraView/evSignon
?p_option=search.SearchMatrixReport
&p_action=doRunReport
&p_output_type=HTML
&report_id=nn

Summary Reports

http://www.myserver.com/evj/ExtraView/evSignon
?p_option=search.SearchSummaryReport
&p_action=doRunReport
&p_output_type=HTML
&report_id=nn

Aging Reports

http://www.myserver.com/evj/ExtraView/evSignon

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

18 of 76 4/1/2016 11:10 AM

?p_option=search.SearchAgingReport
&p_action=doRunReport
&p_output_type=HTML
&report_id=nn

Calendar Reports

http://www.myserver.com/evj/ExtraView/evSignon
?p_option=search.SearchCalendarReport
&p_action=doRunReport
&p_output_type=HTML
&report_id=nn

Planning Reports

http://www.myserver.com/evj/ExtraView/evSignon
?p_option=search.SearchPlanningReport
&p_action=doRunReport
&p_output_type=HTML
&report_id=nn

Charts

http://www.myserver.com/evj/ExtraView/evSignon
?p_option=search.SearchChartReport
&p_action=doRunReport
&p_output_type=HTML
&report_id=nn

Taskboard Reports

http://www.myserver.com/evj/ExtraView/evSignon
?p_option=search.SearchTaskBoardDisplay
&p_action=doRunReport
&p_output_type=HTML
&report_id=nn

Dashboard Reports

http://www.myserver.com/evj/ExtraView/evSignon
?p_option=search.DashboardReport
&p_action=doRunReport
&p_output_type=HTML
&report_id=nn

The purpose of this local function is to allow the administrator to program a user list or user pop-up field
with the ability to pop-up a new child window, with the complete details of the user whose name is selected
in the user list.

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

19 of 76 4/1/2016 11:10 AM

An example of how to use this function is to provide a pop-up window for the ORIGINATOR of issues
within ExtraView. To achieve this, set the following text (on a single line) into the data dictionary URL field
for the ORIGINATOR field:

?p_option=admin.UserAccountsDisplay
&p_action=showUserDetails
&p_user_id=$$NAME$$

Now select Yes as the value for the field Display as URL.

Update the field in the data dictionary.

A link button will now appear by the ORIGINATOR field on both the add and edit screens as shown here.

When you press the link button, a window will pop up that shows the user’s details, similar to the following.

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

20 of 76 4/1/2016 11:10 AM

A common requirement is to be able to integrate ExtraView seamlessly into your own web site, allowing
your own users to use a subset of ExtraView’s capabilities. Most often, these users will be anonymous
within ExtraView (i.e. they will not have their own user name and password), but their user details will be
trapped as part of the record, for follow up.

ExtraView allows you to call it remotely, typically using a guest login, with limited privileges, to prevent
"hacking" by an irresponsible user. The steps to achieving this are typically:

Create or use an existing GUEST user group within the ExtraView administrative function
Create a guest user account within ExtraView
Use the Security Privileges to limit the fields that the GUEST user group can see and update. These
will vary with the installation
Implement HTML forms within your own website on pages. Most typically, there will be two such
pages. One will allow your users to submit new issues, and one will allow users to search ExtraView
for specific issues or with a keyword search
This may also be coupled with creating specific fields within ExtraView that are used to store
information that you want your users to see, as opposed to fields that are for internal use by your
engineering or QA or other staff
You may also use the privacy features of ExtraView. The ExtraView Administration Guide will help
you understand this feature in depth. Issues can be either Public or Private. This means that only
users internal to your company and users within the company that reported the issue have access to
the records if they are Private. If the issues are Public, then everyone can see them. You may also
take a more sophisticated approach, by using Privacy Groups. These allow you to set up groups of
individuals that can see specific issues, irrespective of their user group or other privileges.

HTML Pages that access ExtraView remotely

The following example shows how suitable pages can be designed. They all use the ability of ExtraView to
support anonymous access, assuming the administrator has provided this facility. See the ExtraView
Administrator’s Guide for more information.

First, let us design a screen that allows our anonymous users to add new issues to ExtraView. It looks like
this:

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

21 of 76 4/1/2016 11:10 AM

The HTML source to this page is:

<html>
<head>
 <title>Submit an Issue to MyCo</title>
 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<script>
 function setState(button) {
 if (document.AddIssue.statevar.value != "Submitted") {
 button.form.statevar.value = button.name;
 }
 if (button.value=="Submitted") {
 alert("This form has already been submitted. Please wait.");
 }
 if (button.name =="Submit") {
 if (document.AddIssue.short_descr.value == "") {
 alert("You must enter a title for the issue");
 return;
 }
 if (document.AddIssue.description.value == "") {
 alert("You must enter a description for the issue");
 return;
 }
 document.AddIssue.statevar.value = "INSERT";
 button.value = "Submitted";
 document.AddIssue.submit();
 }
}

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

22 of 76 4/1/2016 11:10 AM

</script>
<body bgcolor="#FFFFFF">
 <p><i>Report a New Issue to MyCo
 </i></p>
 <p>Please complete this form to submit your issue. Your issue will be entered
 automatically in our support system and you will receive a response from us.

 <hr>

 <form name="AddIssue" ACTION="http://myco.extraview.net/myco/ExtraView
/ev_api.action"
 METHOD="POST">
 <INPUT NAME="statevar" TYPE="HIDDEN" VALUE="INSERT">
 <INPUT NAME="status" TYPE="HIDDEN" VALUE="SUBMIT">
 <INPUT NAME="assigned_to" TYPE="HIDDEN" VALUE="JIM.SMITH">
 <INPUT NAME="product_name" TYPE="HIDDEN" VALUE="CUSTOMER_ISSUES">
 <table border="0" cellpadding="2">
 <tr>
 <td width="220" valign="top">
 <div align="right">Enter title</div>
 </td>
 <td valign="top" width="625">
 <input type="text" name="short_descr" size="56" maxlength="255">
 </td>
 </tr>
 <tr>
 <td width="220" valign="top">
 <div align="right">Enter description</div>
 </td>
 <td valign="top" width="625">
 <TEXTAREA WRAP="virtual" NAME="description" COLS=50 ROWS=4></TEXTAREA>
 </td>
 </tr>
 <tr>
 <td width="220" valign="top">
 <div align="right">Your name </div>
 </td>
 <td valign="top" width="625">
 <input type="text" name="customer_name" size="40" maxlength="40">
 </td>
 </tr>
 <tr>
 <td width="220" valign="top">
 <div align="right">Your email address</div>
 </td>
 <td valign="top" width="625">
 <input type="text" name="customer_email" size="40" maxlength="40">
 </td>
 </tr>
 <tr>
 <td width="220" valign="top">
 <div align="right">Your phone number</div>
 </td>
 <td valign="top" width="625">
 <input type="text" name="customer_phone" size="40" maxlength="40">
 </td>
 </tr>
 <tr>
 <td width="220" valign="top">
 <div align="right"></div>
 </td>
 <td valign="top" width="625">
 </td>
 </tr>
 <tr>

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

23 of 76 4/1/2016 11:10 AM

 <td width="220" valign="top">
 <div align="right"></div>
 </td>
 <td valign="top" width="625">
 <input type="button" name="Submit" value="Submit" onClick="setState(this);">
 </td>
 </tr>
 </table>

 <hr>
 Copyright © 2002 ExtraView Corporation
Powered by ExtraView
</form>
</body>
</html>

Next, we want to design a web page that will allow the user to search for an issue, either by the ID or by
keywords. We are setting up this page to only search for OPEN issues related to a product named
OUR_PROD. The page will look like this:

The source to this page is as follows:

<html>
<head>
 <title>Search the MyCo Knowledgebase</title>

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

24 of 76 4/1/2016 11:10 AM

 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<script>
 function search1(button) {
 document.SearchForm1.submit();
 } function search2(button) {
 document.SearchForm2.submit();
 }
</script>

<body bgcolor="#FFFFFF">
 <><i>Search For Existing Issues
</i></p>
 <p>This form is used to search MyCo's knowledge base for existing issues. Either
enter an issue number to search for a specific problem, or enter one or more
keywords to search the entire database for open issues with the keywords.
</p>
 <hr>

 <form name="SearchForm1" ACTION="http://myco.extraview.net/myco/ExtraView
/ev_api.action" METHOD="POST">
 <INPUT NAME="statevar" TYPE="HIDDEN" VALUE="SEARCH">
 <INPUT NAME="p_PAGE_LENGTH" TYPE="HIDDEN" VALUE="10">
 <INPUT NAME="p_RECORD_START" TYPE="HIDDEN" VALUE="1">
 <INPUT NAME="p_TEMPLATE_FILE" TYPE="HIDDEN" VALUE="file.html">

 <table width="100%" border="0" cellpadding="2">
 <tr valign="middle">
 <td width="30%">
 <div align="right">Search for an Issue #</div>
 </td>
 <td>
 <input type="text" name="p_id" size="50" maxlength="6">
 <input type="button" name="Submit2" value="Search" onClick="search1(this)">
 </td>
 </tr>
 </table>
</form>

<hr>

<form name="SearchForm2" ACTION=http://myco.extraview.net/myco/ExtraView
/ev_api.action METHOD="POST">
 <INPUT NAME="user_id" TYPE="HIDDEN" VALUE="guest">
 <INPUT NAME="password" TYPE="HIDDEN" VALUE="guest">
 <INPUT NAME="statevar" TYPE="HIDDEN" VALUE="SEARCH">
 <INPUT NAME="product_name" TYPE="HIDDEN" VALUE="OUR_PROD">
 <INPUT NAME="status" TYPE="HIDDEN" VALUE="OPEN">
 <INPUT NAME="p_PAGE_LENGTH" TYPE="HIDDEN" VALUE="100">
 <INPUT NAME="p_RECORD_START" TYPE="HIDDEN" VALUE="1">
 <INPUT NAME="p_TEMPLATE_FILE" TYPE="HIDDEN" VALUE="file.html"> <table
width="100%" border="0" cellpadding="2">
 <tr valign="middle">
 <td width="30%">
 <div align="right">Search for keywords</div>
 </td>
 <td>
 <input type="text" name="p_keyword" size="50" maxlength="255">
 <input type="button" name="Submit" value="Search" onClick="search2(this)">
 </td>
 </tr>
 </table> <hr> Copyright © 2002 ExtraView Corporation

 Powered by ExtraView

</form> </body> </html>

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

25 of 76 4/1/2016 11:10 AM

Server-side HTML Templates

In order that the search will return neatly formatted HTML in the same style as the rest of your web site,
you will create a server-side ExtraView template. Note the parameter in the source file named
p_template_file that points to the template. For example, we want to return from the search a report that
looks as follows:

The source of the template file is as follows:  

<TABLE cellpadding="2" cellspacing="2" border="1" bordercolor="#FFCCCC">

<TR valign="top" bgcolor="#CCCCFF">

<TD align=right width=80>Defect #</TD>

<TD width=800>__ID__</TD>

</TR>

<TR valign="top">

<TD align=right>Title</TD>

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

26 of 76 4/1/2016 11:10 AM

<TD>__SHORT_DESCR__</TD>

</TR>

<TR valign="top">

<TD align=right>Product</TD>

<TD>__PRODUCT_NAME__</TD>

</TR>

<TR valign="top">

<TD align=right>Description</TD>

<TD><PRE>__DESCRIPTION_TEXT__</PRE></TD>

</TR>

<TR valign="top">

<TD align=right>Comments</TD>

<TD><PRE>

__COMMENTS_USER__: __COMMENTS_TIMESTAMP__

__COMMENTS_TEXT__

</PRE>

</TD>

</TR>

</TABLE>

Note that server-side templates do not need to contain HTML. For example, if you want to output straight
text for a CLI command such as evsearch, then a server-side template can be defined in exactly the same
manner as for the HTML templates. For more information on server-side templates, please click here.

ExtraView can be configured to translate a text area field (or similar type of field) from one language to
another. This configuration can be fully automated, or may be driven by a button or other control on an add
or edit screen. The feature utilizes the Google Translate API. At the time of writing, this API supports
translations between more than 50 different languages.

The Google Translate API version 2 is only available from Google as a paid service and is no longer free of
charge (version 1 was a free service). ExtraView provides seamless access to the service, but it is your
responsibility to purchase and maintain the service from Google. At the time of writing the cost of using the

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

27 of 76 4/1/2016 11:10 AM

service is $20 USD per 1 million characters translated from one language to another.

When you or your company subscribes to the service, Google provides you with a unique key that must be
embedded into a method within the ExtraView UserJavaScript.js file. The functions within the
UserJavaScript.js file may also be customized to provide the work flow needed. This page shows a typical
implementation, but with a little additional work in JavaScript, this feature may be used in a whole variety
of different ways. The example shows how to translate a text area field from English to Japanese
automatically when the field containing the English text is modified.

The ExtraView behavior setting named ENABLE_GOOGLE_LANGUAGE_API must be set to a value of
YES to enable the feature. This provides the infrastructure within the add and edit screens to support the
translations. Note that all users must have Internet access to reach the Google server to use this feature.

For this example, we are assuming that we will enter or modify text in the DESCRIPTION field, and place
the translated results into a field named TRANSLATE_RESULTS. The logic is controlled by two JavaScript
functions placed in the UserJavaScript.js file. Follow these steps to configure:

Turn the behavior setting named ENABLE_GOOGLE_LANGUAGE_API to YES
ExtraView has a function in the UserJavaScript.js file named ev_translate. The default looks like this:

/**
 * The ev_translate function is used to call the translateText callback function to
 * perform the translation of the DESCRIPTION field from one language to another.
 * This call is initiated via an HTML modifier created as an onchange layout cell
 * attribute on the field to be translated.
 * For example: ev_translate('en', 'ja') will translate the contents of the
 * DESCRIPTION field from English to Japanese and place the results in the field
 * TRANSLATE_RESULT.
 *
 * You can modify this function to work with other fields or to work with a list
 * of langauges.
 *
 * The ev_translate function uses the Google API translation service. This is not
 * a free service and each customer should obtain a license and their own KEY_VAL
 * from Google (see https://developers.google.com/translate/).
 *
 * Google and ExtraView Corp. make the following disclaimer if your company
 * utilizes the Google API translation service:
 *
 * THIS SERVICE MAY CONTAIN TRANSLATIONS POWERED BY GOOGLE. GOOGLE AND EXTRAVIEW
 * CORP. DISCLAIM ALL WARRANTIES RELATED TO THE TRANSLATIONS, EXPRESS OR IMPLIED,
 * INCLUDING ANY WARRANTIES OF ACCURACY, RELIABILITY, AND ANY IMPLIED WARRANTIES
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 */
 function ev_translate(from_lang, to_lang) {
 // WARNING: The API-KEY may be viewable by your users.
 // Restrict your key to designated domains or use a proxy to hide your key to

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

28 of 76 4/1/2016 11:10 AM

 // avoid misuse by other parties. Alter API-KEY to the value of the key
 // provided by Google when you license the Google Translate API.
 var key = 'API-KEY';
 var newScript = document.createElement('script');
 var d = document.editForm;
 var url = 'https://www.googleapis.com/language/translate/v2';
 newScript.type = 'text/javascript';
 var sourceText = escape(d.p_description.value);
 var source = url + '?key=' + key + '&source=' + from_lang + '&target=' +
 to_lang + '&callback=translateText&q=' + sourceText;
 newScript.src = source;

 // When we add this script to the head, the request is sent off.
 document.getElementsByTagName('head')[0].appendChild(newScript);
}

This function may be modified, for example to alter the names of the fields being referenced or to
define a different structure for the two languages being referenced. For example, you might want to
trigger the language for the result to be selected from a list.

The second function in UserJavaScript.js provides the call back processing from the Google API. It is
provided as:

function translateText(response) {
 try {
 var d = document.editForm;
 var xlat = response.data.translations[0].translatedText;
 d.p_translate_result.value = xlat;
 } catch (err) {
 d.p_translate_result.value = 'Error from Google API: ';
 d.p_translate_result.value += response.error.message;
 }
 }

Again, significant modification may be made to this function. The example here simply translates the
text returned from the Google Translate API and places the result in the TRANSLATE_RESULT
field.

Make sure you place the DESCRIPTION and the TRANSLATE_RESULT fields on the layouts where
they are to be used and make sure that they have read and write permission
To trigger the translation, you create an HTML modifier on the DESCRIPTION field within the add
or edit screens where you want to use the feature. This example simply looks for a change in the
content to trigger the translation:

onchange=ev_translate('en', 'ja');

This HTML modifier translates the text within the DESCRIPTION field from English to French and
places the translated text within the TRANSLATE_RESULT field.

This action uploads a file from the local file system to be attached to an existing record in ExtraView. It is
designed to be used within an HTML form. Note that the syntax and usage of this command is different to
other API commands; extra care should therefore be taken when using the add_attachment command.

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

29 of 76 4/1/2016 11:10 AM

SYNTAX

<FORM METHOD="post" action=http://www.myserver.com/dev/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=add_attachment
&p_template_file=template_filename
&strict=no | yes
>

This command must have additional parameters that are not part of the FORM tag, but are part of the
HTML within the <form> </form> construct. These will be provided as part of the INPUT tags within
the form. The INPUT tags that must be provided are:

Tag name Purpose

p_id The issue ID

p_attach_desc The description of the attachment

file The filename of the attachment

The following example shows how this API command is used from within an HTML form. The example
includes the use of a template file that formats the results returned from ExtraView.

Adding an attachment from an HTML page

<html>
<title>Add an attachment to an existing issue</title>
<body>
<form method="POST"
 action="http://myserver.extraview.net/dev/ExtraView/ev_api.action?
 statevar=add_attachment&p_template_file=attach_results.html&p_id=12345"
 enctype="multipart/form-data">
<input type="hidden" name="p_id" value="12345">
<table>
<tr>
<td>Description</td>
<td><input type="text" size="40" name="p_attach_desc"></td>
</tr>
<tr>
<td colspan="2">Add attachment</td>
</tr>
<tr>
<td>Filename</td>
<td><input type="file" size="40" name="file"></td>
</tr>
<tr>
<td colspan="2"><input type="submit" value="Add Attachment"> </td>
</tr>
</table>
</form>

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

30 of 76 4/1/2016 11:10 AM

</body>
</html>

Note that if you are using a template file to return the results of the command, you must include the
parameter named p_id twice within the HTML, once within the <form ...> tag, and once as a hidden field
within the <INPUT ...> tag. This is because of the limitations of how browsers work with multi-part forms.

attach_results.html template file

This file must reside in the WEB-INF/user_templates directory. Please see the page on server-side
templates for a fuller explanation. Carefully note the following in the example file. The following fields are
available as tags within the template.

You will see in the example that there is a __REPEAT_START__, __REPEAT_STOP__ block. This allows
the display of all attachments added to the issue, with the one just added being the first in the list. If you
only want to see the details of the attachment you just added, you can remove the __REPEAT_START__
and __REPEAT_STOP__ statements.

<html>
<title> Attachment added to ExtraView </title>
<body>
<p>Attachment added successfully to issue # __ID__</p>

A list of all attachments held in the issue is as follows

<table>
<tr>
<td>File name</td>
<td>Description</td>
<td>File size</td>
<td>Created By</td>
<td>Date Created</td>
</tr>
__REPEAT_START__
<tr>
<td>__FILE_NAME__</td>
<td>__ATTACH_DESC__</td>
<td>__FILE_SIZE__</td>
<td>__CREATED_BY_USER__</td>
<td>__DATE_CREATED__</td>
</tr>
__REPEAT_STOP__
</table>

</body>
</html>

NOTES

This command uses a different syntax to most other commands within the API. This is to allow
ExtraView to handle the multi-part form, used for uploading files to the server

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

31 of 76 4/1/2016 11:10 AM

You can upload and attach the same file multiple times to a single record within ExtraView
There are no limits to the number of files that can be attached to a single record
Each file uploaded can be up to 4 GB in size
The syntax of this command is likely to change with future versions of ExtraView, to be consistent
with the same action structure as other commands
The optional parameter strict, with a value of yes, enforces the action to operate only on ALT_ID. If
there is no match for the value of the ALT_ID in the specified ID parameter, then the message
Invalid Id will be returned. This means that a matching ID value will be ignored.

Tag name Purpose

__ATTACH_DESC__ The description of the file that was attached

__ATTACHMENT_ID__
The internal ID of the attachment. Typically not
useful for external purposes

__CREATED_BY_USER__ The user who added the attachment

__DATE_CREATED__ The date the attachment was created

__ID__
The ID of the issue to which the attachment was
added

__FILE_NAME__ The filename of the file attached

__FILE_SIZE__ The size, in bytes, of the attached file

__NFILES__ The total number of files attached to the issue

This action provides a list of all the available fields to the user in a specific order that is used by the layout
for adding new issues within ExtraView. Most typically, this script is used to provide a list of fields and their
titles for inclusion in a Perl script that is used to insert a new record within the ExtraView database. This
action is used as a basis of the CLI evadd command. Note that all of the ExtraView security is in force and
an individual user will only see the fields to which he has access. Also, note that there is no difference in the
way that User Defined Fields (UDF’s) are shown from other fields. UDF’s are handled in a seamless way
within the API.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=add_field_list
&include_images=1

This will return a list of fields as shown in the following figure. Note that the fields will vary according to
your permissions and the fields defined in your installation.

RESOLUTION Disposition
CUSTOMER Customer
+SHORT_DESCR Title

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

32 of 76 4/1/2016 11:10 AM

ALT_ID Alt ID
+PRODUCT_NAME Product
PRIORITY Priority
+CATEGORY Category
SEVERITY_LEVEL Severity
ASSIGNED_TO Assigned To
OWNER Owner
COMPONENT Component
TEST_CASE_ID Test Case ID
TEST_CASE_LOCATION Test Case Location
PLATFORM Platforms
OS OS
PRIVACY View
*WORKAROUND Workaround
*RELEASE_NOTES Release Notes
+*DESCRIPTION Description

NOTES

The general form of each entry returned by the command is:

<prefix><fieldName><delimiter><fieldTitle><delimiter><parentName>

where the parentName is blank or the immediate parent in an allowed-value or database-type
relationship and the delimiter is that specified in the behavior setting named
DEFAULT_TEXT_REPORT_DELIMITER and the characters in the prefix have the following
meaning:

~ means the field is part of a repeating row layout
* means the field has a display type of textarea or logarea
% means the field has a display type of user

The parameter include_images is optional. If provided, it always has a value of 1. When the
parameter is provided, fields with a display type of image are included in the results returned.

This command inserts new list values into existing user defined list type fields.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=add_udf_list
&udf_name=my_field
&udf_values=val

To add more than one list value with a single API command, you need to have encoded the tab character
separator in your API command.

EXAMPLE

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

33 of 76 4/1/2016 11:10 AM

This example adds xxx, yyy and zzz as values to a UDF named my_field.

http://www.myserver.com/evj/ExtraView/ev_api.action? user_id=username&password=password
&STATEVAR=add_udf_list&UDF_NAME=my_field &UDF_VALUES=xxx%09yyy%09zzz

This action adds an existing user to an existing user group.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=add_user_to_group
&security_user_id=userID
&user_group=userGroup

NOTES

You must provide both an existing user and an existing user group
The command will fail if you pass a name other than security_user_id or user_group
The command will fail if the user is already a member of the user group
You must have update permission to the security key named SE_SECURITY_GROUP before you
can execute the command

This command retrieves a list of allowed values for a given parent key. For example, if modules
(MODULE_ID) in your installation are dependent upon products (PRODUCT_NAME), then you can use
this function to find all the valid modules for a given product. The command can also be used to retrieve the
values in a specified list only.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=allowed_list
&field=field_name
&parent=parent_field_name
&parent_val=product_name

NOTES

Both the field_name and the product_name must exist else the command will fail. The delimiter of a colon
(:) in the example is the system delimiter stored in the behavior setting named
DEFAULT_TEXT_REPORT_DELIMITER. If you only specify the field without the parent and parent_val,

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

34 of 76 4/1/2016 11:10 AM

the command will return a list of all the values of the field.

EXAMPLE

The following URL retrieves a list of modules for the product named WIDGET.

http://www.myserver.com/evj/ExtraView/ev_api.action? user_id=username
&password=password &statevar=allowed_list &field=MODULE_ID &parent=PRODUCT_NAME
&parent_val=WIDGET

This will produce output similar to the following:

1022:POWER_SUPPLY 1032:CASE 1203:MOTHERBOARD 1255:KEYBOARD 1334:MOUSE 1432:MONITOR

This call invokes the CLI user exit in the UserCustom Java class.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=custom
[&custom_param1=value[&custom_param1=value...]]

NOTES

This command works in conjunction with the UserCustom Java class within ExtraView. This command can
be used to create your own API calls that execute any code within the ExtraView environment. It is
therefore a very powerful command that can be used to create any new API command or commands that
you need for any purpose. The custom parameters are optional and may be any name value pairs that you
provide to the new command. The parameters are passed into the UserCustom CLI exit.

This command sets or resets the internal debug level of messages being sent to ExtraView’s log file.

SYNTAX

http://www.myserver.com/evj/ExtraView?DEBUG=nn

NOTES

The default level for nn is 6. Valid values are in the range 1 through 12. This command affects all users of
ExtraView, no matter how they access the program (CLI, Web interface, API), and the higher the value, the
more the performance of ExtraView is degraded for all users. In addition, considerable more information is

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

35 of 76 4/1/2016 11:10 AM

written to the log with higher values of the debug level. Therefore, please ensure the level is set back to a
maximum of 6 in your production environment, if you have altered it while testing scripts that you are
developing.

This action allows you to delete an existing record within ExtraView’s database. Note that you must have
permission to delete records before you can execute this action. The security key that controls this is named
PR_RESOLUTION.DELETE_BUTTON.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=delete
&p_template_file=file.html
&id=nnnnn
&strict=no | yes

If the issue is deleted without error, the function will return the issue number as shown below. Note that the
term “Bug #” is dependent on the screen title used for the ID field in the data dictionary.

Bug # 12352 deleted.

NOTES

You must provide a valid name and value pair for the ID field. The value must be an existing issue within
the ExtraView database. If you do not provide this, an error message is generated.

The optional parameter strict, with a value of yes, enforces the action to operate only on ALT_ID. If there
is no match for the value of the ALT_ID in the specified ID parameter, then the message Invalid Id will be
returned. This means that a matching ID value will be ignored.

This action deactivates an existing user from ExtraView. It does not delete the user record from the
database. This is because historic records contain references to users and their name must remain available
for display.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=delete_user
&security_user_id=userID

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

36 of 76 4/1/2016 11:10 AM

NOTES

You must provide an existing userID. The command will fail if you pass a name other than security_user_id.
You must have update permission to the security key named SE_SECURITY_USER before you can
execute the command.

This action provides a list of all the available fields to the user in a specific order that is used by the layout
for updating existing issues within ExtraView. Most typically this script is used to provide a list of fields and
their titles for inclusion in a script that is used to update an existing record within ExtraView’s database.
This action is used as a basis of the CLI command evupdate. Note that all of ExtraView’s security is in
force and an individual user will only see the fields to which he has access. In addition, there is no
difference in the way that User Defined Fields (UDF’s) are shown compared to other fields. UDF’s are
handled in a seamless way within the API.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=edit_field_list
&include_images=1

This will return a list of fields as shown in the following figure. Note that the fields will vary according to
your permissions and the fields defined in your installation.

RESOLUTION Disposition
CUSTOMER Customer
+SHORT_DESCR Title
ALT_ID Alt ID
+PRODUCT_NAME Product
PRIORITY Priority
+CATEGORY Category
SEVERITY_LEVEL Severity
ASSIGNED_TO Assigned To
OWNER Owner
COMPONENT Component
TEST_CASE_ID Test Case ID
TEST_CASE_LOCATION Test Case Location
PLATFORM Platforms
OS OS
PRIVACY View
*RELEASE_Notes Release Notes
+*Description Description

NOTES

The general form of each entry returned by the command is:

<prefix><fieldName><delimiter><fieldTitle><delimiter><parentName>

where the parentName is blank or the immediate parent in an allowed-value or database-type relationship
and the delimiter is that specified in the behavior setting named DEFAULT_TEXT_REPORT_DELIMITER

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

37 of 76 4/1/2016 11:10 AM

and the characters in the prefix have the following meaning:

~ means the field is part of a repeating row layout

* means the field has a display type of textarea or logarea

% means the field has a display type of user

The parameter include_images is optional. If provided, it always has a value of 1. When the parameter is
provided, fields with a display type of image are included in the results returned.

This action provides a list of all the available fields to the user. Note that all of ExtraView’s security is in
force and an individual user will only see the fields to which he has access. Also note that there is no
difference in the way that User Defined Fields (UDF’s) are shown than other fields. UDF’s are handled in a
seamless way within the API.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=fields
&include_fields=y

NOTES

The include_fields=y is an optional name/value pair. If this is included then the output returned returned by
the command will have the display type of each field returned, following the title of the field. This will
return a list of fields similar to that shown in the following figure. Note that the fields will vary according to
your permissions and the fields defined in your installation.

ASSIGNED_TO Assigned To
CATEGORY Category
COMPONENT Component
DATE_CLOSED Date Closed
DATE_CREATED Created
DAYS_IN_STATUS Days in Queue
DAYS_OPEN Days Open
ID Bug #
MONTHS_IN_STATUS Months In Status
MONTHS_OPEN Months Open
ORIGINATOR Originator
ORIGINATOR_NAME Originator
OS OS
OWNER Owner
PLATFORM Platforms
PRIORITY Priority
PRIVACY View
PRODUCT_NAME Product
RELEASE_FIXED Version Closed
RELEASE_FOUND Version Open
*RELEASE_NOTES Release Notes
RELEASE_STATUS Release Status

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

38 of 76 4/1/2016 11:10 AM

RESOLUTION Disposition
SEVERITY_LEVEL Severity
SHORT_DESCR Title
TIMESTAMP Last Modified
TIMESTAMP_MONTH Timestamp Month
TIMESTAMP_WEEK Timestamp Week
WEEKS_IN_STATUS Weeks In Status
WEEKS_OPEN Weeks Open
*WORKAROUND Workaround

This API call retrieves an individual record from the ExtraView database. You must know the ID of the
issue in question to be able to extract the information.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get
&id=nnnnn
&p_template_file=file.html
&username_display=ID | LAST | FIRST
&strict=no | yes

The action retrieves a single record in XML format from the database and displays it similarly to the
example shown in the following figure. Note that only fields to which the user has permission will be
displayed. Also, note that it is possible to see repeating fields such as version records within the output.

<?xml version="1.0"?>
<PROBLEM_RECORD>
<ID TITLE="Bug #">12621</ID>
<SHORT_DESCR TITLE="Title"><![CDATA[An error occurs when you overload the power
convertor]]></SHORT_DESCR>
<SEVERITY_LEVEL TITLE="Severity">High</SEVERITY_LEVEL>
<PRIORITY TITLE="Priority">Low</PRIORITY>
<PRODUCT_NAME TITLE="Product">NetPower</PRODUCT_NAME>
<DATE_CREATED TITLE="Created">14-AUG-01</DATE_CREATED>
<OWNER TITLE="Owner">rick</OWNER>
<TIMESTAMP TITLE="Last Modified">15-AUG-01</TIMESTAMP>
<ASSIGNED_TO TITLE="Assigned To">Florence</ASSIGNED_TO>
<PRIVACY TITLE="View">Private</PRIVACY>
<CATEGORY TITLE="Category">Hardware</CATEGORY>
<RESOLUTION TITLE="Disposition">Not found</RESOLUTION>
<DATE_CLOSED TITLE="Date Closed"></DATE_CLOSED>
<ORIGINATOR TITLE="Originator">JON.BJORNSTAD</ORIGINATOR>
<ORIGINATOR_NAME TITLE="Originator">Jon Bjornstad</ORIGINATOR_NAME>
<RELEASE_RECORD>
<RELEASE_FOUND TITLE="Version Open">ADC2</RELEASE_FOUND>
<RELEASE_FIXED TITLE="Version Closed">1.01</RELEASE_FIXED>
<RELEASE_STATUS TITLE="Release Status">Unassigned</RELEASE_STATUS>
</RELEASE_RECORD>
<RELEASE_RECORD>
<RELEASE_FOUND TITLE="Version Open">Framework 1.3</RELEASE_FOUND>
<RELEASE_FIXED TITLE="Version Closed">Framework 1.3</RELEASE_FIXED>

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

39 of 76 4/1/2016 11:10 AM

<RELEASE_STATUS TITLE="Release Status">Open</RELEASE_STATUS>
</RELEASE_RECORD>
<Description TITLE="Description"><![CDATA[If you enter an overload trip on the front
panel you will find an error occurs.]]></Description>
</PROBLEM_RECORD>

NOTES

You must provide a valid name and value pair for the ID field. The value must be an existing issue within
the ExtraView database. If you do not provide this, an error message is generated.

The optional parameter USERNAME_DISPLAY may be used to override the behavior setting named
USERNAME_DISPLAY, for the duration of the execution of a single API call. This allows the developer to
return the user names in a different format than the system-wide default.

The optional parameter strict, with a value of yes, enforces the action to operate only on ALT_ID. If there
is no match for the value of the ALT_ID in the specified ID parameter, then the message Invalid Id will be
returned. This means that a matching ID value will be ignored.

The fields returned in the results correspond to the fields on the detailed report layout of the user’s current
business area, current project and current role. However, if the behavior setting named
REPORT_DTL_ITEM_DATA_LAYOUT is set to YES, then the detailed report for the user’s current role
and the issue’s business area and project are used to define the fields being returned.

This action retrieves a list of areas that exist within the ExtraView database. For a full explanation of areas,
please consult the Administration Guide.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_areas

NOTES

The delimiter of a colon (:) in the example is the system delimiter stored in the behavior setting named
DEFAULT_TEXT_REPORT_DELIMITER. The currently selected area for the user who is executing the
command, in their current role is marked with an asterisk (*). Sample return from the get_areas function:

*0:(default values)
3:Customer
23:Project
43:Incident

This action downloads a file attached to an existing record in ExtraView to the local file system.

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

40 of 76 4/1/2016 11:10 AM

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_attachment
&attachment_id=nnnnn

NOTES

You can retrieve the filenames and attachment ID’s with the command list_attachment. An example of this
command is:

http://www.myserver.com/evj/ExtraView/ev_api.action?user_id=myuser&password=mypassword&
statevar=list_attachment&id=10070

Generates this result:

2010-6-24.9.49.:UserJavaScript.js:3639:ExtraView:23:test:application/x-javascript

This action retrieves the value of a behavior setting from ExtraView.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_behavior_setting
&app_default_name=1

NOTES

You must provide the name of an existing behavior setting in the get_behavior_setting parameter name. The
result of the function is:

app_default_name:app_default_value

where the delimiter : is the system delimiter stored in the behavior setting named
DEFAULT_TEXT_REPORT_DELIMITER. The =1 in the parameter list is a mechanism to provide a
dummy value. The number 1 has no significance. For a full list of behavior settings and their uses, please
consult the Administration Guide.

This action returns the data dictionary defaults for all data dictionary fields that have a default value set.

SYNTAX

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

41 of 76 4/1/2016 11:10 AM

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_field_defaults

NOTES

The information returned from this call is of the format:

field_name:default_value

One row of data is returned for each field in the data dictionary that has a default value.

This API call retrieves specific fields from an individual record from the ExtraView database. You must
know the ID of the issue in question to be able to extract the information.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_fields
&username_display=ID | LAST | FIRST
&id=nnnnn
&status=1
&priority=1
&short_descr=1
&comments=1 [&all=yes]

The action retrieves only the fields requested from a single issue record in the database and displays the
results with one field on each line. Note that only fields to which the user has permission will be displayed.
Also, note that it is possible to see repeating fields such as version records within the output. The above
command with the syntax given will return output similar to:

Configuring the XYZ module results in an error
OPEN
MEDIUM

NOTES

You must provide a valid name and value pair for the ID field. The value must be an existing issue within
the ExtraView database. If you do not provide this, an error message is generated.

The values returned may not be returned in the same order as the parameters you provide.

The values returned are the NAMES or ID’s of the fields set as parameters.

The =1 in the parameter list is a mechanism to provide a dummy value. The number 1 has no significance.

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

42 of 76 4/1/2016 11:10 AM

The optional parameter username_display may be used to override the behavior setting named
USERNAME_DISPLAY, for the duration of the execution of a single API call. This allows the developer to
return the user names in a different format than the system-wide default.

When retrieving log area display type fields, such as the COMMENTS field in the above example, there is an
optional parameter, all=yes. When this is set, you will retrieve all the entries for the log area, not just the
most recent one.

This API call provides an indication of the status of ExtraView.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_heartbeat

NOTES

The return from the server is XML, similar to the following:

<?xml version="1.0" encoding="UTF-8" ?>

<EV_HEARTBEAT>

<EV_STATUS>EXTRAVIEW ALIVE</EV_STATUS>

<DB_STATUS>DB CONNECTION CONFIRMED</DB_STATUS>

<DB_DATETIME>2003/09/11 11:33:22</DB_DATETIME>

<FREE_MEMORY>197</FREE_MEMORY>

<TOTAL_MEMORY>250</TOTAL_MEMORY>

<HEARTBEAT_EXEC_TIME>330</HEARTBEAT_EXEC_TIME>

<TASK_INFO TASK=task name>

<NODE_ID>node name<NODE_ID>

<START_OPTION>start option</START_OPTION>

<TASK_STATE>task state</TASK_STATE>

<POLL_INTERVAL>poll interval
seconds</POLL_INTERVAL>

- [<THREAD_INFO>

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

43 of 76 4/1/2016 11:10 AM

<THREAD_STATE>thread state</THREAD_STATE>

<SECS_SINCE_EXECUTION>seconds since last
execution

[<PRIORITY>thread priority</PRIORITY>]

</THREAD_INFO>] </TASK_INFO>

</EV_HEARTBEAT>

In the above, the section on task information is repeated for each configured task on the application server.
The returned information includes:

task name
name of the background task, e.g., SESSION_MONITOR,
TASK_CONTROL_TASK, BATCHMAIL, etc.

node name name of the node hosting the evapi service

start option START_NOW, STOP_NOW, START_ON_BOOT, or none

task state STARTED, STOPPED, or ERROR

poll interval seconds the (minimum) number of seconds between polled executions

thread state running or stopped

seconds since last
execution

number of seconds since the task was most recently scheduled to run

thread priority
the priority of the thread (using Java thread priority values) -- may not appear in
output

The return indicates not only that ExtraView is alive, but also it confirms that a database connection could
be made, that the ExtraView servlet is running on the application server, and that the web server is running.

Note that the tag named DB_DATETIME and its value provide the current timestamp of the database
server. This can be useful to provide local client applications with the server time of the host ExtraView
application.

The amount of free memory, the total memory and the amount of time the command took to execute are
also returned.

This command can be placed in a script that is run at routine intervals to provide an indication of the health
of the system. Not only can confirmation be made that the system is alive, but the time to execute the
command is available

This API action is a variant of the get_projects API call, which will be used for most purposes. The
get_list_projects command adds the capability to execute user custom code that has been defined. The
command makes a call to the 5-parameter version of frSelectListuser custom callout to allow for filtering of
the project list returned to the user from the command.

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

44 of 76 4/1/2016 11:10 AM

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_list_projects
&area_id=nn

NOTES

To provide further refinements with this API command, it is protected by a security permission key named
CF_GET_PROJECTS_API. If the user's current role does not have read permission to this key, the user
custom exit will see an exception.

The value of the area_id, nn, must exist in the database, else the command will fail.

The asterisk (*) in the return shows the currently selected project.

The delimiter ‘:’ in the example is the system delimiter stored in the application default named
DEFAULT_TEXT_REPORT_DELIMITER.

Sample return from the get_list_projects function:

*0:(default values)

1:Customer Projects

2:Internal Projects

3:Documentation

4:Marketing Requirements

This command returns the contents of the ExtraView application server log.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_log

NOTES

ExtraView makes a check to ensure that the user requesting the log has administrative privileges, as
indicated by the behavior setting named ADMIN_BYPASS_GROUP being one of the user roles that the
user may adopt. If the user does not have this access, they will not be able to execute this command

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

45 of 76 4/1/2016 11:10 AM

successfully.

The output from this command may be substantial in size.

This action retrieves a list of projects that exist within an area in the ExtraView database. For a full
explanation of areas and projects, please consult the Administration Guide.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_projects
&area_id=nn

NOTES

The value of the area_id, nn, must exist in the database, else the command will fail.

The asterisk (*) in the return shows the currently selected project. The delimiter ‘:’ in the example is the
system delimiter stored in the application default named DEFAULT_TEXT_REPORT_DELIMITER.

Sample return from the get_projects function:

*0:(default values)

1:Customer Projects

2:Internal Projects

3:Documentation

4:Marketing Requirements

This function retrieves a list of available reports for a given user.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_reports

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

46 of 76 4/1/2016 11:10 AM

NOTES

The delimiter ‘:’ in the example is the system delimiter stored in the behavior setting named
DEFAULT_TEXT_REPORT_DELIMITER.

The typical use of this command is to retrieve a list of available public and private reports, to present these
as a menu and allow the user to select which report he is going to run with the run_report function.

There are two main sections returned, a list of private: and a list of public: reports.

Within each of these sections, each report is shown with four values, separated by the
DEFAULT_TEXT_REPORT_DELIMITER and specified as:

1. Report ID – a numeric identifier for the report

2. Title – the title of the report

3. Type – One of the following types:

Type Purpose

QUICKLIST QuickList reports

DETAILED Detailed reports

STANDARD Column reports with standard filters

ADVANCED Column reports with advanced filters

SUMMARY Summary reports with standard filters

SUMMARY_ADV Summary reports with advanced filters

CHART Charts with standard filters

CHART_ADV Charts with advanced filters

AGING Aging reports with standard filters

AGING_ADV Aging reports with advanced filters

Sample return from the get_reports function:

private:

169:All Features Requests:STANDARD:That are open

94:Bugs I Fixed in January:STANDARD:Bugs not Closed Yet

99:Bugs Open By Month:CHART:For Tracker Enterprise

401:Build

30:STANDARD:Estimated versus Actual Time

89:My Hot Llist:STANDARD:Priority 1 issues that are not closed

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

47 of 76 4/1/2016 11:10 AM

73:Open and Fixed Defects:CHART:Year to Date

114:Owners of open bugs:STANDARD:Sorted by owner

119:Report of Open issues:STANDARD:By Bill

109:Status of Bugs Reported:CHART:Over all bugs public:

144:Bug Trend Report:CHART:Open vs. Fixed Issues

391:Bugs:AGING:Aging of all bugs that are not closed

4:Bugs - Assigned to you:SUMMARY:Issues assigned by product

164:Bugs - List of Closed Issues:STANDARD:Ordered by Product

68:Bugs - No Reproducible State:STANDARD:Open Issues

386:Customer Issues:AGING:Aging of all issues

43:Customer Issues:STANDARD:New Issues By Priority

48:Customer Issues:STANDARD:Open Issues By Priority

249:Customer Issues - Time Spent:STANDARD:Items fixed

58:Feature Requests:SUMMARY: Requests By Product and Category

239:Helpdesk Issues:STANDARD:New / Open Issues Assigned to Me

234:Helpdesk Issues:ADVANCED:Open Issues

209:Knowledge Base:ADVANCED:Published Articles

214:Knowledge Base:ADVANCED:Unpublished Articles

79:My Open Issues:STANDARD:for Home Page

33:Open P1 Issues:STANDARD:All Areas - Ordered by Assigned To

3:Originated by you:SUMMARY:Issues originated by you

63:QA List - Fixed Defects:STANDARD:Ordered by Priority

84:Summary of All Issues:CHART:Chart of All Statuses

53:Summary of Open Customer Issues:SUMMARY_ADV:By Product

This action retrieves a list of available roles for a given user.

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

48 of 76 4/1/2016 11:10 AM

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_roles

NOTES

The delimiter ‘:’ in the example is the system delimiter stored in the application default named
DEFAULT_TEXT_REPORT_DELIMITER.

The asterisk (*) indicates the current role of the user.

Sample return from the get_roles function:

ENGINEERING:Engineering

*QA:Quality Assurance

MNGMT:Management

ADMIN:Administrator

This action retrieves the title of a field from the ExtraView data dictionary, by providing its field name.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_title
&dd_name=1

NOTES

You must provide the name of an existing database dictionary field in dd_name.

The =1 in the parameter list is a mechanism to provide a dummy value. The number 1 has no significance.

The result of the function is:

dd_name:title

where the delimiter : is the system delimiter stored in the behavior setting named
DEFAULT_TEXT_REPORT_DELIMITER.

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

49 of 76 4/1/2016 11:10 AM

This function returns a list of the field and field titles for the security user object in ExtraView.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_user_field_list

NOTES

Sample output:

+SECURITY_USER_ID:User Id
+FIRST_NAME:First Name
+LAST_NAME:Last Name
+SECURITY_PASSWORD:Password
+EMAIL:Email Address
+USER_ROLE:User Group
+ALPHA_TIMEZONE:Time zone
LANGUAGE:Language
JOB_TITLE:Job Title
COMPANY_NAME:Company Name
ADDRESS_LINE1:Address 1
ADDRESS_LINE2:Address 2
CITY:City
STATE:State/Province
POSTAL_CODE:Zip/Postal Code
COUNTRY:Country
REGION:Region
WORK_TELEPHONE:Work Phone
HOME_TELEPHONE:Home Phone
CELL_PHONE:Cell Phone
FAX:Fax
PAGER:Pager
AREA_ID:Area Id
PROJECT_ID:Project Id
START_PAGE_ID:Start Page
USER_FIELD_1:User Field 1
USER_FIELD_2:User Field 2
USER_FIELD_3:User Field 3
USER_FIELD_4:User Field 4
USER_FIELD_5:User Field 5
USER_FIELD_6:User Field 6
USER_FIELD_7:User Field 7
USER_FIELD_8:User Field 8
USER_FIELD_9:User Field 9
USER_FIELD_10:User Field 10
LOGIN_ID:Alternative User Id
LDAP_UPSERT_TIME:LDAP Upsert Time

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

50 of 76 4/1/2016 11:10 AM

This command retrieves the values for a user's personal information. Only fields to which the inquiring user
has permission will be returned.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_user_info
<&login_id=username2> || <security_user_id=username2>

NOTES

The user_id belongs to the user making the request. Either the login_id or the security_user_id of the user
being inquired upon must be provided. The security_user_id is the user ID of the user being inquired upon.

This is a sample of the data returned from the get_user_info API call. Note that the delimiter is that set in
the behavior setting named DEFAULT_TEXT_REPORT_DELIMITER:

LOGIN_ID:A
LAST_NAME:Smith
FIRST_NAME:Bill
JOB_TITLE:Manager
WORK_TELEPHONE:(831) 461-7100
HOME_TELEPHONE:
CELL_PHONE:(831) 555-1212
FAX:
PAGER:
COMPANY_NAME:Superior Software Corporation
ADDRESS_LINE1:269 Mount Hermon Road
ADDRESS_LINE2:
CITY:Scotts Valley
STATE:CA
POSTAL_CODE:95066
COUNTRY:USA
ENABLED_USER:Y
USER_FIELD1:Yes
USER_FIELD2:Engineer

This command retrieves the list of users within ExtraView.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_users
&disabled=[Y|N|ONLY]

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

51 of 76 4/1/2016 11:10 AM

&filter=pattern
&filter_type=[ID|FIRST|LAST]

NOTES

The disabled parameter is optional. If provided, the optional values are:

Y Return disabled users as well as enabled users

N Return enabled users only. This is the default

ONLY Only return disabled users

The filter parameter is optional. This allows you to perform a wildcard pattern search for specific user
records. The wildcard character is an asterisk (*) and you may have more than one of them in the pattern.
For example:

*OB
Return all records where the user ID ends with the letters OB. For example, this will
return BOB but not ROBERT

OB This would return both BOB and ROBERT

The filter_type parameter is optional. If provided, the optional values are as follows. You may provide
multiple filter_type parameters in a single get_users call, each with one of the three possible values.

ID
This returns the User ID, from the security_user.security_user_id column of the user
table

FIRST This returns the first name, from the security_user.first_name column of the user table

LAST This returns the last name, from the security_user.last_name column of the user table

This action retrieves a complete list of the metadata stored in ExtraView.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=get_valid_meta_data
&fields=field_x
&user_info=x
&disabled_values=Y
&all=Y

NOTES

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

52 of 76 4/1/2016 11:10 AM

This function can return a significant amount of data, depending on your installation.

By default, the data returned is for the user’s current area and project only.

By default, the data returned is also filtered by any allowed values. For example, if there is an allowed
value with the field named STATUS as the parent, then only the child records in the current area will be
returned.

The previous two default conditions can be overridden, by using the optional parameter all=Y as part of the
call.

The optional parameter fields can be used to refine the metadata returned to a single, or to a list of fields.
For example, fields=CUST_LIST will return the metadata associated with the CUST_LIST field. You can
repeat this parameter as many times as you need in the parameter list, to return the metadata on a number
of fields with a single command.

The optional parameter disabled_values wlil return all the users, including those that are disabled, within the
output to the command.

The optional parameter user_info has three possible functions:

When no parameter is specified, the command works as documented in the other sections of this page1.
When the parameter has a value of N then no user information is generated in the return of the call2.
When the parameter has a value of Y then one set of generic information is returned, with
SECURITY_USER_ID being used as the field ID.

3.

The security permissions for each field are checked for the user performing the API command, and only
fields to which the user has read permission are returned.

The result of the function is in the form:

field_name:meta_data_name:meta_data_title

where the delimiter : is the system delimiter stored in the behavior setting named
DEFAULT_TEXT_REPORT_DELIMITER.

A small sample of data returned is shown below - note the delimiter in this case is the | character:

CATEGORY|ENHANCEMENT|Enhancement

CATEGORY|HARDWARE|Hardware

CATEGORY|SOFTWARE|Software

OS|5755|FREEBSD OS|5721|LINUX

OS|5913|NetBSD

OS|5711|SOLARIS

OS|5752|WINDOWS 95

OS|5787|WINDOWS 98

OS|5704|WINDOWS NT

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

53 of 76 4/1/2016 11:10 AM

PRIORITY|0|0

PRIORITY|1|1

PRIORITY|2|2

PRIORITY|3|3

PRIORITY|4|4

PRIORITY|5|5

PRIVACY|PRIVATE|Private

PRIVACY|PUBLIC|Public

PRODUCT_NAME|GLOBALINTERACTION|Global Interaction

PRODUCT_NAME|NETTRANSACTIONS|Net Transactions

RELEASE_STATUS|CLOSED|Closed

RELEASE_STATUS|FIXED|Fixed

RELEASE_STATUS|OPEN|Open

RELEASE_STATUS|PENDING|Pending

RELEASE_STATUS|UNASSIGNED|Unassigned

RESOLUTION|CANNOT DUPLICATE|Cannot Duplicate

RESOLUTION|DEFERRED|Deferred

RESOLUTION|DUPLICATE|Duplicate

RESOLUTION|FIXED|Fixed

RESOLUTION|NEED MORE INFO|Need more info

SEVERITY_LEVEL|CRITICAL|Critical

SEVERITY_LEVEL|HIGH|High

SEVERITY_LEVEL|LOW|Low

SEVERITY_LEVEL|MEDIUM|Medium

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

54 of 76 4/1/2016 11:10 AM

The history API command returns all the changes to item records, from a specified point in time to the
current time.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=history
&cutoff=timestamp
&cutoff_end=timestamp
&evhist_sellist=selectionList
&hist_range_end=timestamp
&hist_range_start=timestamp
&username_display=ID | LAST | FIRST
&dd_name_n=value
&show_attributes=YES | NO

NOTES

The timestamp refers to the ITEM.LAST_DATE_UPDATED and the
ITEM_HIST.LAST_DATE_UPDATED fields in the database. It is provided within the command in a value
of any valid format allowed by ExtraView. If the value supplied can be misconstrued, the user’s locale is
used to determine the meaning of the date.

The cutoff timestamp provides the current value of the fields. The cutoff timestamp value is not included in
the issues generated by this command; that is, the comparison is item timestamp is greater than cutoff
timestamp. The cutoff parameter is required.

The cutoff_end parameter is optional. If omitted, there all issues up until the current time are retrieved. If
provided, the value must be greater than the value of cutoff. This can be used to limit the items for which
history is generated to a specific time period.

The evhist_sellist parameter is a comma-delimited list of field names. This is an optional parameter, and if
provided is a list of the fields that are output by the command. If it is not provided, the field list is taken
from the detailed report of the user’s current business area and project.

hist_range_start and hist_range_end are optional parameters. If omitted, then the items retrieved are
generated based upon updates that occured between these times. If provided then the query becomes a
range query, where hist_range_start is the beginning time and hist_range_start is the end time of the updates
to the records retrieved.

The optional parameter username_display may be used to override the behavior setting named
USERNAME_DISPLAY, for the duration of the execution of a single API call. This allows the developer to
return the user names in a different format than the system-wide default.

dd_name_n=value represents an optional list of name value pairs to be used as filters on the query that
returns results for the command.

The fields returned by the command are formatted as XML data.

The fields returned in the XML data are subject to two restrictions. The user must have read permission for

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

55 of 76 4/1/2016 11:10 AM

the field, and the field must exist on the detailed report layout for the user’s current area and project
settings.

The item fields returned by the command are in the same XML format as those returned by the API get
command.

The item fields returned may contain repeating row data within the XML. If a deleted item record is
encountered in the returned data, this will be shown in the XML as follows –

<DELETED_RECORD ID='item id' FULL_TIMESTAMP='issue timestamp'/>

This command provides a convenient method of determining all changes to the ExtraView database since a
point in time, to be used to synchronize data with another ExtraView instance, or with a completely
separate application (For example, ExtraView enables the synchronization of data with the Perforce SCM
system with this command).

This API call imports a tab-delimited file of parent and child values into the ExtraView database. Unlike
most API commands (but similar to the add_attachment command), this command is designed to be used
within an HTML page.

SYNTAX

<form method="POST" http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=import_allowed_values
&file=filename
&area=area_id
&project=project_id
&parent=parent_dd_name
&child=child_dd_name
&enctype="multipart/form-data">
</form>

The form to be uploaded when prompted by the form must have the following tab-delimited format, where
--> represents the tab character:

parent_value1 --> child_value1

parent_value1 --> child_value2

parent_value2 --> child_value3

parent_value2 --> child_value4

NOTES

area_id specifies the area_id into which the allowed values will be imported. You can use the Business Area
list administration utility in the web interface to see the ID’s for all areas.

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

56 of 76 4/1/2016 11:10 AM

project_id specifies the project_id into which the allowed values will be imported. You can use the Project
list administration utility in the web interface to see the ID’s for all projects.

parent_dd_name specifies the data dictionary name of the parent field which has the allowed value
relationship with the specified child.

child_dd_name specifies the data dictionary name of the child field which has the allowed value
relationship with the specified parent.

The values in both the parent and child allowed value lists must already exist to work with this command.

EXAMPLE

The following HTML file can be used as a simple template for this command:

<html>

 <body>

 <form method="post" action="http://www.mycompany.com/evj/ExtraView/ev_api.action?

 user_id=username&password=password&statevar=import_allowed_values&

 area_id=0&project_id=0&parent=IT_BUILDING&child=IT_BUILDING_FLOOR"

 enctype="multipart/form-data">

 <input type="file" name="file" id="file" size="1" value="" maxlength="256">

 <input type="submit" value="Upload Attachment(s)" class="menuButton"

 title="Click to process and upload the attachments you have selected">

 </form>

 </body>

</html>

This API call inserts a new record into the ExtraView database. All fields are treated as optional, and all
defined business rules are executed and checked before and after the record is inserted (the preupdate and
postupdate rule directives). The fields used with this command are typically those that are placed on the
ADD_PROBLEM layout for the business area and project specified in the command syntax.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=insert

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

57 of 76 4/1/2016 11:10 AM

&p_template_file=file.html
&username_display=ID | LAST | FIRST
&send_email=no
&area=0
&project=0
&short_descr=This%20is%20the%20title
&description=Description%20for%20a%20problem
&status=OPEN
&priority=P1
&assigned_to=jim.smith
&release_found=1.2.3
&product_name=MY_PRODUCT
. . .

There are two name-value pairs that can be provided, that are not fields within ExtraView. These are –

&send_email=no1.

If you supply this name and value, then the insert will override the standard default with which ExtraView
will generate email upon the submission of a new issue

&username_display=ID | LAST | FIRST1.

The optional parameter USERNAME_DISPLAY may be used to override the behavior setting named
USERNAME_DISPLAY, for the duration of the execution of a single API call. This allows the developer to
return the user names in a different format than the system-wide default.

If the issue is added to the database without error, the function will return the issue number as shown below.
Note that the term “Bug #” is dependent on the screen title used for the ID field in the data dictionary.

Bug # 12352 added.

NOTES

You must not provide a name and value for the ID field. ExtraView allocates all new issue numbers
internally and any attempt to provide an ID will result in an error message, similar to "You cannot provide a
Bug # when you are adding a new issue."

Many of the fields within the ExtraView database, such as product_name, status, priority, severity_level,
assigned_to, category, etc., must be given valid values that already exist within the meta-data of your
installation. If you attempt to enter a value that is not known to ExtraView, an error message will result.

If you attempt to contravene a business rule, an error message will result. For example, if your installation
only allows new issues to be SUBMITTED and you immediately attempt to provide a value of CLOSED
when inserting a record, an error message will result.

Also, note that special non-alphabetic characters, such as a space, must be “escaped”.

You may optionally specify the values for the AREA and PROJECT into which the issue is to be inserted,
using their numeric ID. These ID’s can be seen within the administration utilities in the web interface. You
may not use their titles. If you do not specify the AREA and PROJECT within the parameter list, then the
current AREA and PROJECT of the current user are used. For example, use:

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

58 of 76 4/1/2016 11:10 AM

... ... &p_area=3&p_project=58

All field permissions are obeyed with the command, and if you attempt to insert a field that does not have
write permission, then the whole command will fail.

Inserting Document & Image type fields

These fields require additional metadata in the form of a description and the file to upload's character set.
You will have created an HTML form for the upload. An HTML snippet that shows how to make this work
is as follows:

Image Description: <input type="text" name="image_desc"
value="image_dd_name desc" />

<input type="hidden" name="image_dd_name_charset" value="UTF-8" />
File to upload: <input type="file" name="image_dd_name" />

This form assumes an image field that has a data dictionary name of image_dd_name. Note the optional
charset and desc. The charset is not required for image fields, but for documents it can be useful. The
default, if charset is not given is UTF-8.

This action creates a new user in the ExtraView database.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=insert_user
&p_template_file=file.html
&security_user_id =userID
&first_name=user_first_name
&last_name=user_last_name
&security_password=password
&email=email_address
&job_title=user_job_title
&company_name=user_company
&address_line1=user_address_line_1
&address_line2=user_address_line_2
&city=city
&state=state
&postal_code=postal_code
&country=country
&work_telephone=work_telephone
&home_telephone=home_telephone
&cell_phone=cell_phone
&address_line1=user_address_line_1
&fax=fax
&pager=pager

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

59 of 76 4/1/2016 11:10 AM

NOTES

You must always provide security_user_id, security_password, first_name, last_name and email as fields.

If the ExtraView application default named ENFORCE_DETAILED_USER_INFO has a value of YES,
then the COMPANY_NAME, ADDRESS_LINE1, CITY, STATE, POSTAL_CODE and
WORK_TELEPHONE must be provided.

The command will fail if the security_user_id already exists.

You must have update permission to the security key named SE_SECURITY_USER before you can
execute the command.

This action inserts a new record or records in the ExtraView database from input formatted with XML. The
input can be made as part of the HTTP data stream, or can be input from a file in XML format.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=insert_xml
&xml_file_name=filename | &xml_string=xml_data
&p_template_file=file.html

NOTES

The statevar must be insert_xml.

Provide either the xml_file_name or xml_string, but not both. You provide xml_file_name if the input is
from a file that exists at the time of the execution of the command. You provide xml_string, if the data for
the insert is provided as part of the HTTP request. This string contains the XML data to be parsed.

p_template_file is the name of the template to be used for return value string generation. Generally, this
template file is stored on the server in the WEB-INF/user_templates directory. On normal completion of the
operation, this template undergoes parameter substitution with the following variable names:

Tag Explanation

__ID__
The item number of the last item
inserted

__NUMBER_ITEMS_INSERTED__ The number of inserted items

__ITEM_TITLE__
The title of the ITEM_ID dictionary
entry

See the section on Templates for a full explanation of how to create user templates. If no template file is
requested, the command returns a completion message to the calling program via HTTP.

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

60 of 76 4/1/2016 11:10 AM

On error completion, the return string contains an error message substituted into the error.html user
template in the format:

error-message "at line=xxx and column number=yyy"

where xxx and yyy are the values returned by the XML parser.

As an example, the following message may be returned:

"The end-tag for element type "ITEM" must end with a '>' delimiter at line=8 and column number=9"

Only one record should be inserted with the XML_STRING in one call to the API. When the input is in a
file, there is no restriction to the number of records in a single operation.

The Administration Guide contains additional information, including the DTD for the XML data and a list
of all possible errors.

This action checks the ExtraView database for the existence of an issue.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=item_exists
&id=nnnnn
&strict=no | yes

NOTES

The output from the call is of the form Defect #nnnnn exists or Defect #nnnnn does not exist.

The optional parameter strict, with a value of yes, enforces the action to operate only on ALT_ID. If there
is no match for the value of the ALT_ID in the specified ID parameter, then the message Invalid Id will be
returned. This means that a matching ID value will be ignored.

This action allows you to obtain a list of files attached to an existing record in the ExtraView database.
Most importantly, you are able to get a list of the attachment ID’s, allowing you to distinguish between the
files attached to an issue, for the download action.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

61 of 76 4/1/2016 11:10 AM

&password=password
&statevar=list_attachment
&p_template_file=file.html
&id=nnnnn
&strict=no | yes

The return from this command may look like this:

12-JUN-2001:index.html:804:Rather, Gary:21:The index.html as revised
14-JUN-2001:Applic.doc:28160:Koppel, Carl:38:Application notes

NOTES

The delimiter is the value of the DEFAULT_TEXT_REPORT_DELIMITER in the ExtraView application
defaults. The order of the fields returned is date of upload, filename, file size (in bytes), name of person
who uploaded the attachment, ID of the attachment and the description.

The optional parameter strict, with a value of yes, enforces the action to operate only on ALT_ID. If there
is no match for the value of the ALT_ID in the specified ID parameter, then the message Invalid Id will be
returned. This means that a matching ID value will be ignored.

This function runs an existing report, using its report_id obtained from the get_reports function.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=run_report
&username_display=ID | LAST | FIRST
&api_reverse_lookup=NO | YES
&id=report_id
&page_length=100
&record_start=1 &record_count=120 &persist_handle=xxx &field1=value1 &field2=value2

NOTES

This command runs a report from the available list of public and private reports using the report_id
obtained from the get_reports function
The output is returned in XML format
The fields returned in the results correspond to the fields on the detailed report layout of the user’s
current business area, current project and current role. However, if the behavior setting named
REPORT_DTL_ITEM_DATA_LAYOUT is set to YES, then the detailed report for the user’s current
role and the issue’s business area and project are used to define the fields being returned
The parameter named page_length is required and gives the ExtraView API the maximum number of

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

62 of 76 4/1/2016 11:10 AM

records to return with one call. In conjunction with the parameter named p_record_start, you can
build JavaScript functions to retrieve paginated results, if you believe your searches can bring up
large number of records
The parameter named record_start is required and gives ExtraView the number of the first record in
the search results to display. This is used in conjunction with the parameter named p_page_length,
which defines the number of results to retrieve. If there is a possibility that record_start can be
greater than page_length, you must use the parameter named record_count. Using these parameters,
you can build functions to retrieve paginated results if you believe your searches can bring up large
number of records
The optional parameter api_reverse_lookup has a default value of NO. If set to YES, then all the user
defined field values are expressed with the field's title as opposed to the field's ID. This is usful when
using fields with a display type of list, where the programmer needs to know the internal ID of a list
value in order to use it as a parameter in the API call. With api_reverse_lookup=YES, then the
programmer can use the field's title. Usually this is well known and obvious as opposed to ID's which
need to be discovered through a SQL query on the database

The optional parameter username_display may be used to override the behavior setting named
USERNAME_DISPLAY, for the duration of the execution of a single API call. This allows the
developer to return the user names in a different format than the system-wide default. The optional
parameter named persist_handle may be used to paginate the result set by spreading the results
returned over several separate calls using this API command. The persist_handle identifies the result
set, qualified by the user_id, that is used to maintain the result set information across multiple API
calls. The rules for using persist_handle are as follows:

A new result set is generated whenever record_start=1; an existing result set is used whenever
record_start > 1
The same persist_handle value can only be used for subsequent pages of the result set on the
same node; in clustered environments, if a subsequent call is directed to another node, the
result set will not be found and results will not be returned
The maximum number of pages returned is 10. This means that the page_length must be greater
than 1/10th the size of the result set (# of rows returned) or the results will be truncated with no
error indication.

The parameters represented by field1=value1 and field2=value2 are used to provide any number of
runtime filters that are required by the report. For a name value pair to be valid with this API call, the
field must have been defined within the report as a runtime filter. You must provide a name value pair
for each and every runtime filter in the report you are running. Failure to do this will result in an error
being displayed
If the report you are running uses the advanced report filters, then this automatically implies that the
report will also use expanded report filters
This API command uses the filters specified in the report. Any runtime filters you have within the
report can be replaced with filters specified within the command. Note that if you wish to run a
report with runtime filters and want to use advanced search features such as numeric and date
operators, you should use the search API command. The search API command has more
flexibility in this case.

This API call allows you to search the ExtraView database and to return a set of records that match the
search criteria. This function is equivalent to the search capability within the browser version of ExtraView.
It is extremely powerful as multiple search filters can be set on different fields. For example, it is

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

63 of 76 4/1/2016 11:10 AM

straightforward to set up a search that responds to a query such as “tell me all the open issues against a
specific module within a specific product that contain a specific keyword.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=search &page_length=100
&record_start=1
&record_count=10
&p_template_file=file.html
&persist_handle=xxx
&username_display=ID | LAST | FIRST
&status=OPEN &module_id=WIDGET
&product_name=MY_PRODUCT
&keyword=wireless%20PDA
[&report_id=nnn]
. . .

For example, a return from a valid search may be as shown in the following XML:

<?xml version="1.0"?>

<EXTRAVIEW_RESULTS>

<PROBLEM_RECORD>

<ID TITLE="Bug #">12266</ID>

<SHORT_DESCR TITLE="Title"><![CDATA[Here is the title]]></SHORT_DESCR>

<SEVERITY_LEVEL TITLE="Severity">02</SEVERITY_LEVEL>

<PRIORITY TITLE="Priority">2</PRIORITY>

<PRODUCT_NAME TITLE="Product">NetOp</PRODUCT_NAME>

<DATE_CREATED TITLE="Created">19-APR-01</DATE_CREATED>

<OWNER TITLE="Owner">DIAMONDK</OWNER>

<TIMESTAMP TITLE="Last Modified">21-JUN-01</TIMESTAMP>

<ASSIGNED_TO TITLE="Assigned To">CARL.KOPPEL</ASSIGNED_TO>

<PRIVACY TITLE="View">Private</PRIVACY>

<CATEGORY TITLE="Category">Software</CATEGORY>

<RESOLUTION TITLE="Disposition"></RESOLUTION>

<DATE_CLOSED TITLE="Date Closed"></DATE_CLOSED>

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

64 of 76 4/1/2016 11:10 AM

<ORIGINATOR TITLE="Originator">ROBBIE.LLOYD</ORIGINATOR>

<ORIGINATOR_NAME TITLE="Originator">Rob Lloyd</ORIGINATOR_NAME>

<MODULE_RECORD>

<MODULE_NAME TITLE="Module">Server</MODULE_NAME>

</MODULE_RECORD>

<RELEASE_RECORD>

<RELEASE_FOUND TITLE="Version Open">1.0.1.16</RELEASE_FOUND>

<RELEASE_FIXED TITLE="Version Closed"></RELEASE_FIXED>

<RELEASE_STATUS TITLE="Release Status">Open</RELEASE_STATUS>

</RELEASE_RECORD>

</PROBLEM_RECORD>

<PROBLEM_RECORD>

<ID TITLE="Bug #">12118</ID>

<SHORT_DESCR TITLE="Title"><![CDATA[Another problem]]></SHORT_DESCR>

<SEVERITY_LEVEL TITLE="Severity">01 sev</SEVERITY_LEVEL>

<PRIORITY TITLE="Priority">1</PRIORITY>

<PRODUCT_NAME TITLE="Product">NetOp</PRODUCT_NAME>

<DATE_CREATED TITLE="Created">14-FEB-01</DATE_CREATED>

<OWNER TITLE="Owner">CARL.KOPPEL</OWNER>

<TIMESTAMP TITLE="Last Modified">21-APR-01</TIMESTAMP>

<ASSIGNED_TO TITLE="Assigned To">CARL.KOPPEL</ASSIGNED_TO>

<PRIVACY TITLE="View">Private</PRIVACY>

<CATEGORY TITLE="Category">Software</CATEGORY>

<RESOLUTION TITLE="Disposition"></RESOLUTION>

<DATE_CLOSED TITLE="Date Closed"></DATE_CLOSED>

<ORIGINATOR TITLE="Originator">CARL.KOPPEL</ORIGINATOR>

<ORIGINATOR_NAME TITLE="Originator">Carl Koppel</ORIGINATOR_NAME>

<MODULE_RECORD> <MODULE_ID TITLE="Module">Client</MODULE_NAME>

</MODULE_RECORD>

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

65 of 76 4/1/2016 11:10 AM

<RELEASE_RECORD>

<RELEASE_FOUND TITLE="Version Open">Framework 1.1</RELEASE_FOUND>

<RELEASE_FIXED TITLE="Version Closed"></RELEASE_FIXED>

<RELEASE_STATUS TITLE="Release Status">Closed</RELEASE_STATUS>

</RELEASE_RECORD>

</PROBLEM_RECORD>

</EXTRAVIEW_RESULTS>

Note that if you do not have permission to view any of these fields, they will not appear in the output from
the action.

This action purposely returns only a small number of fields from the database. If you require additional
fields, you can parse the ID out of the returned information and then use the get action to read the
remaining fields within the database.

You should be careful in your use of this action as it can conceivably return extremely large result sets to
you.

NOTES

The fields returned in the results correspond to the fields on the detailed report layout of the user’s
current business area, current project and current role. However, if the behavior setting named
REPORT_DTL_ITEM_DATA_LAYOUT is set to YES, then the detailed report for the user’s current
role and the issue’s business area and project are used to define the fields being returned
The keywords parameter is not a database field, but can be used to provide an unlimited number of
keywords as search filters in a space-delimited list to ExtraView. Note that you must “escape”
characters such as spaces in this list
If you want to search for text contained within a text field, you can use a wildcard convention using
asterisks (*) as the wildcards
You can search using an inequality filter as a parameter. For example, &release!=1.2 used as a
parameter will work
You can search looking for null values in the results with a filter similar to &release={null} will
search for all records with a null value in the field release
The parameter named p_page_length is required and gives the ExtraView API the maximum number
of records to return with one call. In conjunction with the parameter named p_record_start, you can
build script functions to retrieve paginated results, if you believe your searches can bring up large
number of records
The parameter named p_record_start is required and gives ExtraView the number of the first record
in the search results to display. In conjunction with the parameter named p_page_length, you can
build script functions to retrieve paginated results, if you believe your searches can bring up large
number of records
You need to supply the parameter named p_record_count whenever p_record_start is greater than
p_page_length
The parameter named p_template_file is optional. If it is not provided, ExtraView returns the results
of the query in XML format. If it is provided, its value is the name of a server-side file that contains a

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

66 of 76 4/1/2016 11:10 AM

template to format the results of the query. Using this template provides a means of formatting the
output from the search command to a style of your own choosing. Most commonly, this is used to
provide a style of output consistent with that of the remainder of your own company’s web site. An
example of the source to a template file is shown below.

<TABLE cellpadding="2" cellspacing="2" border="1" bordercolor="#FFCCCC">

<TR bgcolor="#CCCCFF">

<TD align=right width=80>Defect # </TD>

<TD width=800>__TAG_ID__</TD>

</TR>

<TR>

<TD align=right>Title</TD>

<TD>__TAG_SHORT_DESCR__</TD>

</TR>

<TR>

<TD align=right>Product</TD>

<TD>__TAG_PRODUCT_NAME__</TD>

</TR>

<TR>

<TD align=right>Description</TD>

<TD>

<!-- __DESCRIPTION__ -->

<PRE>

__TAG_DESCRIPTION_TEXT__

</PRE>

</TD>

</TR>

<TR>

<TD align=right>Comments</TD>

<TD>

<!-- __COMMENTS__ -->

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

67 of 76 4/1/2016 11:10 AM

<PRE>

__TAG_COMMENTS_USER__: __TAG_COMMENTS_TIMESTAMP__

__TAG_COMMENTS_TEXT__

</PRE>

</TD>

</TR>

</TABLE>

The optional parameter username_display may be used to override the behavior setting named
USERNAME_DISPLAY, for the duration of the execution of a single API call. This allows the
developer to return the user names in a different format than the system-wide default
If no records are returned by the search, the message "No records found." will be displayed
You must provide at least one name and value for the search criteria. If you do not do this, you will
see the message "No parameters entered"
Many of the fields within the ExtraView database, such as product_name, status, priority,
severity_level, assigned_to, category, etc., must be given valid values that already exist within the
metadata of your installation. If you attempt to enter a value that is not known to ExtraView, an error
message will result
The optional parameter named persist_handle may be used to paginate the result set by spreading the
results returned over several separate calls using this API command. The persist_handle identifies the
result set, qualified by the user_id, that is used to maintain the result set information across multiple
API calls. The rules for using persist_handle are as follows:

A new result set is generated whenever record_start=1; an existing result set is used whenever
record_start > 1
The same persist_handle value can only be used for subsequent pages of the result set on the
same node; in clustered environments, if a subsequent call is directed to another node, the
result set will not be found and results will not be returned
The maximum number of pages returned is 10. This means that the page_length must be greater
than 1/10th the size of the result set (# of rows returned) or the results will be truncated with no
error indication.

The optional parameter report_id will use the layout associated with a report with the ID to format
the results. Note that the filters specified within the report are not used, but the filters used in the
search URL are used instead
The format of date filter parameters, as used in runtime filters in a report is as follows:

<date> || <date> - <date> || -<date> || <date>-

The latter three are date ranges; rangestart to rangestop, rangestop, and rangestart respectively.

Where <date> is:

<unquoted date> || <sq><unquoted date><sq> || <dq><unquoted date><dq>

where <dq> ::= " (a double quote)
and <sq> := ' (a single quote)

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

68 of 76 4/1/2016 11:10 AM

A date may contain a dash if it appears in quotes. Otherwise, a dash is not permitted except as a date
range signifier.

This command provides a list of fields that may be used as query filters for the current user.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=search_field_list

NOTES

The delimiter used the results is the value of the DEFAULT_TEXT_REPORT_DELIMITER in the
ExtraView application defaults. This command takes into account all security permissions for the user. The
general form of each entry returned by the command is:

<prefix><fieldName><delimiter><fieldTitle><delimiter><parentName>

The parentName is blank or the immediate parent in an allowed-value or database-type relationship
The delimiter is that specified in in the behavior setting named
DEFAULT_TEXT_REPORT_DELIMITER
The characters in the prefix have the following meanings:
~ means the field is part of a repeating row layout
* means the field has a display type of textarea or logarea
% means the field has a display type of user

An example of the return from this command is:

TIMESTAMP:Last Modified

EMAIL_SWITCH:Generate Email

%CHANGED_BY:Changed By

KEYWORD:Keywords

PRODUCT_NAME:Product

*SUGGESTIONS:Engineering Remarks

RELEASE_FOUND:Release

SHORT_DESCR:Title

SEVERITY_LEVEL:Severity

PRIORITY:Priority

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

69 of 76 4/1/2016 11:10 AM

STATUS:Status

ID:Defect #

DATE_CREATED:Created

%OWNER:Owner

CATEGORY:Category

RESOLUTION:Resolution

%LAST_CHANGE_USER:Changed by

DAYS_IN_STATUS:Days in Status

DAYS_OPEN:Days Open

MONTHS_OPEN:Months Open

%ASSIGNED_TO:Assigned To

%ORIGINATOR:Originator

PRIVACY:View

RELEASE_FIXED:Release Fixed

MONTHS_IN_STATUS:Months In Status

START_UPDATE:Updated Start Date

WEEKS_IN_STATUS:Weeks In Status

WEEKS_OPEN:Weeks Open

BUILD_FOUND_IN:Build Found In

BUILD_FIXED_IN:Build Fixed In

This command sets the working area and project for the current user.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=set_area_proj
&area_id=nnn1
&proj_id=nnn2

NOTES

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

70 of 76 4/1/2016 11:10 AM

Both the area_id and the project_id must exist, else the command will fail.

The proj_id must be valid within the area_id, else the command will fail.

This action sets the user role of the current user.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=set_role
&user_group=role_id

NOTES

The role_id specified, must exist, else the command will fail.

You can get a list of the valid roles with the command get_roles.

This command allows you to update an existing record within ExtraView’s database. Only values that are
being altered need be supplied within the API call. Fields whose values are to remain the same need not be
supplied as parameters. All defined business rules using the preupdate and the postupdate directives are
executed and checked before and after the record is updated. The fields used with this command are
typically those that are placed on the EDIT_PROBLEM layout for the business area and project specified
in the syntax of the command.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=update
&p_template_file=file.html
&strict=no | yes
&id=nnnnn
&status=FIXED
&release_fixed=1.2.3
. . .

There is one additional name and value pair that can be provided, that is not a field within ExtraView. This
is &send_email=no. If you supply this name and value pair, then the update will override the set default
with which ExtraView will generate email upon the update of an existing issue.

If the issue is updated without error, the function will return the issue number as shown below. Note that the

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

71 of 76 4/1/2016 11:10 AM

term "Bug #" is dependent on the screen title used for the ID field in the data dictionary.

Bug # 12352 updated.

NOTES

You must provide a valid name and value pair for the ID field. The value must be an existing issue ID within
the ExtraView database. If you do not provide this, an error message is generated.

The optional parameter strict, with a value of yes, enforces the action to operate only on ALT_ID. If there
is no match for the value of the ALT_ID in the specified ID parameter, then the message Invalid Id will be
returned. This means that a matching ID value will be ignored.

Many of the fields within the ExtraView database, such as product_name, status, priority, severity_level,
assigned_to, category, etc., must be given valid values that already exist within the metadata of your
installation. If you attempt to enter a value that is not known to ExtraView, an error message will result.

If you attempt to contravene a business rule, an error message will result. For example, if your installation
only allows issues to be FIXED if they are in an OPEN state and you provide a value of CLOSED, an error
message will result.

All field permissions are obeyed with the command, and if you attempt to update a field that does not have
write permission, then the whole command will fail.

The Role of PROBLEM_RELEASE_ID in the update Command

Usually, when one or more specific repeating rows must be affected (modified or deleted) through the
update command, the PROBLEM_RELEASE_ID parameter is used to identify specific rows. More than
one instance of PROBLEM_RELEASE_ID may be specified. In this case, each field=value parameter
corresponds to the PROBLEM_RELEASE_ID which shares the same position in the parameter list for the
same field name.

Thus, for example,

...&problem_release_id=111&problem_release_id=222&rr_field=abc&rr_field=def

maps the

rr_field=abc to problem_release_id 111 and rr_field=def to problem_release_id 222.

When no PROBLEM_RELEASE_ID in the parameter list maps to a specific rr_field=value, then a new
repeating row is added to accommodate the new value.

Multiple Repeating Row Types

ExtraView supports repeating rows of multiple types. Each type denotes a grouping of fields based on a
layout with that item group type. All repeating row types can be updated via the API. There are two ways
of specifying a repeating row type:

Specific PROBLEM_RELEASE_IDxxx values, where xxx is the item group type, e.g.,
PROBLEM_RELEASE_ID3
Generic PROBLEM_RELEASE_ID values.

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

72 of 76 4/1/2016 11:10 AM

Note1: Specific and generic PROBLEM_RELEASE_ID’s may not be combined in a single API call.

Note2: Each API Update operation using generic PROBLEM_RELEASE_ID values can support only one
repeating row type. Attempts to mix two or more repeating row types in a single API operation with generic
PROBLEM_RELEASE_ID’s will return with an exception.

The edit screen layout, along with the repeating row layouts applicable to the update request, define which
fields belong to which item group type, and therefore, which PROBLEM_RELEASE_IDxxx’s apply.

When generic PROBLEM_RELEASE_ID’s are used, all the specified fields must be grouped into the same
item group type (via the edit layout and the repeating row layouts) – this item group type is used to qualify
the PROBLEM_RELEASE_ID values.

Example of specific PROBLEM_RELEASE_ID Update

...&PROBLEM_RELEASE_ID3=111&PROBLEM_RELEASE_ID4=222&field1=val1&field2=val2

where field1 is in the repeating row layout of item group type 3 and field2 is in the repeating row layout of
item group type 4, both of which are embedded in the edit layout for the user’s curren business area, project
and role. Then two repeating rows are updated, one with field1=val1 and the other with field2=val2, each in
a different repeating row type.

Example of generic PROBLEM_RELEASE_ID Update

...&PROBLEM_RELEASE_ID=111&field1=val1

where field1 is in the repeating row layout of item group type 3 and repeating row 111 is in item group type
3 results in the update of field1 in the specified row. Note that there is no item group type specified in the
PROBLEM_RELEASE_ID variable name.

Using update to Add Repeating Rows

To add new repeating rows, values for fields in the repeating rows are provided without a corresponding
PROBLEM_RELEASE_ID value. For each non-corresponding value of a field, a new repeating row is
inserted. Thus, specifying &rr_field_a=1&rr_field_a=2&rr_field_a=3 with no specification of
PROBLEM_RELEASE_ID will result in three new repeating rows being added with these values, assuming
rr_field_a is a field in the repeating row. To update a repeating row value, you must provide the
PROBLEM_RELEASE_ID value of the row in question.

Using update to Delete Repeating Rows

Within the ExtraView GUI, users check a box named PROBLEM_RELEASE_DELETE in order to delete a
repeating row. The API can emulate this behavior, by setting PROBLEM_RELEASE_DELETE to the
checked for value for any repeating row you wish to delete.

For example, use a call similar to the following to delete a repeating row:

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=update

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

73 of 76 4/1/2016 11:10 AM

&id=nnnnn
&problem_release_id=xxxxx
&problem_release_delete=checked

Updating Document & Image type fields

These fields require additional metadata in the form of a description and the file to upload's character set.
You will have created an HTML form for the upload. An HTML snippet that shows how to make this work
is as follows:

Image Description: <input type="text" name="image_desc" value="image_dd_name desc" />

<input type="hidden" name="image_dd_name_charset" value="UTF-8" />
File to upload: <input type="file" name="image_dd_name" />

This form assumes an image field that has a data dictionary name of image_dd_name. Note the optional
charset and desc. The charset is not required for image fields, but for documents it can be useful. The
default, if charset is not given is UTF-8.

This action allows the user to update the password of an existing user within ExtraView.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=update_user_password
&p_template_file=file.html
&security_user_id=user_name
&old_password=old_password
&new_password=new_password

NOTES

You must provide the ID of an existing user in the security_user_id parameter.

You must provide both the old password and the new password. These will be checked internally within
ExtraView to ensure they conform to any rule that may be in place.

You must have update permission to the security key named SE_SECURITY_USER before you can
execute the command.

This action allows the user to retrieve all the fields that are part of the user record. It is typically used to
generate a list of fields for which to provide values when creating a new user.

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

74 of 76 4/1/2016 11:10 AM

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=user_field_list
&security_user_id=user_name

NOTES

You must have query permission to the security key named SE_SECURITY_USER before you can execute
the command. The list returned will show a plus character (+) if the field is required. A typical output from
the command is shown below.

+SECURITY_USER_ID|Security User Id

+SECURITY_PASSWORD|Security Password

+FIRST_NAME|First Name

+LAST_NAME|Last Name

JOB_TITLE|Job Title

COMPANY_NAME|Company

ADDRESS_LINE1|Address Line1

ADDRESS_LINE2|Address Line2

CITY|City STATE|State

POSTAL_CODE|Postal Code

COUNTRY|Country

+EMAIL|E-Mail Address

WORK_TELEPHONE|Work Telephone

HOME_TELEPHONE|Home Telephone

CELL_PHONE|Cell Phone

FAX|Fax

PAGER|Pager

This action allows the user to retrieve a list of all the user groups within the system. It is typically used to

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

75 of 76 4/1/2016 11:10 AM

generate a list that validates adding a user to a user group.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=user_group_list
&security_user_id=user_name

NOTES

You must have query permission to the security key named SE_SECURITY_GROUP before you can
execute the command. A typical output from the command is shown below.

ADMIN:Administrator

CUSTOMER:Customer

HW_ENG:HW Engineering

QA:Quality Aassurance

SW_ENG:SW Engineering

SUPPORT:Support

This action returns the build information of your ExtraView database.

SYNTAX

http://www.myserver.com/evj/ExtraView/ev_api.action?
user_id=username
&password=password
&statevar=version

NOTES

The information returned is a serial number of the last updates applied to the ExtraView database. A typical
output from the command is shown below.

$Revision: 22 $
$Modtime: 6/23/06 10:37p $

Application Programming Interface http://docs.stg.extraview.com/site/book/export/html/23119

76 of 76 4/1/2016 11:10 AM

